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Preface

This is a widely revised version of lectures I gave at Tokyo Metropolitan University in
1987, originally written in Japanese [67].

Throughout the book our attention is directed to the point — how we can classify
CM modules over a given CM ring, or classify CM rings which have essentially a finite
number of CM modules? Being analogous to lattices over orders, this question seems
to have arised very naturally. The first approach to CM modules in this direction was,
perhaps, done by Herzog [35], and it turned out that there are, in themselves, two basic
aspects of this problem. The first is an algebraic or represent at ion-theoretic side, in which
Auslander and Reiten made remarkable progress by the powerful use of AR sequences.
The second is a geometric side, more precisely, the spectra of CM local rings having
only a finite number of CM modules should be well-behaved singularities. Artin, Verdier,
Knorrer, Buchweitz, Eisenbud, Greuel and many others are concerned with this direction.

In this book I have tried to give a systematic treatment of the subject, as self-contained
as possible, but there is no intention to make this book an encyclopedia of CM modules.
Therefore, even in the case that more general treatments for definitions or proofs exist, I
have prefered to give direct expositions, which, I am afraid, the experienced reader might
feel unwise of me.

I conclude this preface with acknowledgements and thanks to all who supported the
preparation of the book. Especially I would like to express my great gratitude to Prof.
Maurice Auslander who gave me valuable comments on the first draft. I am also in-
debted to Eduardo Marcos, Akira Ooishi and Kazuhiko Kurano who read the manuscript
with great care and attention. Finally I wish to thank Mr. David Tranah, an editor of
Cambridge U.P., for his advice in correcting my English.

January, 1990 Yuji Yoshino





Chapter 1. Preliminaries

In this chapter we will review some basic facts without proofs and give some of the
basic notation that will be used throughout the book. For further results in commutative
algebra we refer the reader to the excellent textbooks of Matsumura [47], [48] and Nagata
[50]. For material such as local cohomologies and canonical modules, we recommend
Herzog and Kunz [37].

Throughout this chapter R is a commutative Noetherian local ring with maximal ideal
m and with residue field k = R/m. We always denote the Krull dimension of R by d. All
modules considered here will be finitely generated and unitary.

A. CM modules.

Let M be an i^-module. Recall that a sequence {a?i, a?2> • • • ixn} of elements in m is

a regular sequence on M if X{+\ is a non zero divisor on M/(#i, #2, • • • »x%)M for any

i (0 < i < n). The depth of M is the maximum length of regular sequences on M.

In this book we shall be concerned exclusively with Cohen-Macaulay modules, which

are defined as follows:

(1.1) DEFINITION. An /^-module M is called a maximal Cohen-Macaulay mod-
ule or simply a Cohen-Macaulay (abbr. CM ) module if the depth of M is equal to
d. The ring R is a CM ring if R is a CM module over R.

The reader may recall several equivalent definitions of CM modules.

(1.2) PROPOSITION. (Grothendieck [33] or Herzog-Kunz [37]) The following condi-

tions are equivalent for an R-module M:

(1.2.0) M is a CM module over R;

(1.2.1) Extk(ib, M) = 0 (i<d);

(1.2.2) H'm(M) = 0 (i±d),
where H^ denotes the i-th local cohomology functor with support on {tn}.
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In practice the conditions (1.2.1) and (1.2.2) will be very useful because of their homo-

logical nature. The next two propositions, for example, are proved by using them.

(1.3) P R O P O S I T I O N . Lei 0 -> L -+ M -+ TV -» 0 bean exact sequence of R-modules.
Then the following hold:
(1.3.1) If L and N are CM, then so is M.
(1.3.2) If M and N are CM, then so is L.

Warning and Exercise: It is not necessarily true that if L and M are CM, then so is N.
Give a counter-example to this.

(1.4) PROPOSITION. Let R be a CM local ring and let

0 —> M —> F n _ ! —> F n _ 2 —* > Fi —> Fo

ê an ezacf sequence of R-modules where each Fi is finitely generated free. Ifn>d, then
M is a CM module.

The following facts are rather well known and will be useful later.

(1.5) PROPOSITION.
(1.5.1) If R is a regular local ring, then any CM module over R is a free module.
(1.5.2) If R is a reduced local ring of dimension 1, then an R-module M is CM only when
it is torsion free, that is, when the natural homomorphism M —• Hom^(Hom^(M, R), R)
is a monomorphism.
(1.5.3) If R is a normal local domain of dimension 2, then an R-module M is
CM only when it is reflexive, that is, when the natural homomorphism M —•
Honift(Hom#(M, R), R) is an isomorphism.
(1.5.4) If R is a normal local domain of dimension > 3, then any CM modules over R
are reflexive. It is, however, not necessarily true that reflexive modules are CM.

B. Multiplicities.
We now summarize some of the basic results from the theory of multiplicities. For an

R-module M, it is known that the length of M/mnM is a polynomial in n if n is large

enough, and the polynomial is of the form

(e(M)/d\)nd + (terms of degree less than rf),

where e(M) is the multiplicity of M. It is true that e(M) is always a nonnegative
integer and that e(M) = 0 if and only if the Krull dimension dim(M) is less than d.
Multiplicities have the property of additivity in the following sense.
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(1.6) PROPOSITION. (Nagata [50, Chapter 3])

(1.6.1) If'0—*L—*M—>N—+0 is an exact sequence of R-modules, then the equality
e(M) = e(L) + e(N) holds.
(1.6.2) If R is an integral domain, then we have e(M) = e(i2)rank(M) for any R-module
M.

(1.7) PROPOSITION. (Nagata [50, Chapter 3]) Let M be a CM module over a local

ring R. Then, for a system of parameters {£i,#2>-.. , xj} for R, we have the inequality

e{M) < lengih(M/{xu x2y... , xd)M) < nd • e(M),

where n is the least integer with the property mn C (x\,xi,. . • >Xd)R.

C. Noetherian normalization.
Later in this book we will have occasion to encounter the case where the local ring R

is an algebra over another local ring T. In such a case we have the in variance of the CM
property.

(1.8) PROPOSITION. (Grothendieck [33, Cor.5.7]) Suppose R is a finite T-algebra
where T is also a local ring with the same dimension d. Then an R-module M is CM
over R if and only if it is CM over T.

In fact this proposition can be proved by using (1.2). Under the same assumption as in
(1.8), the natural ring homomorphism T —• R is called a Noetherian normalization
of R when T is regular. It is a classical result that Noetherian normalizations of R exist
if R is a complete local domain (Matsumura [47, (28.P)]). Combining (1.8) with (1.5.1)
we have:

(1.9) PROPOSITION. Let T -^ R be a Noetherian normalization of R. Then an
R-module M is CM over R only when it is free regarded as a T-module.

D. Local duality and canonical modules.

There is a powerful theorem called local duality for CM modules over CM rings. Before
stating it we recall the definition of canonical modules.

(1.10) DEFINITION. A module KR over a CM ring R is a canonical module of R
if the following two conditions are satisfied:

(1.10.1) KR is a CM module, and

0 (i 4 d).

K [I = i
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It is known that this definition is equivalent to the following single equality (Herzog-
Kunz [37]).

(1.10.3) KomR(Kd
m(R), ER(k)) ~ KRj

where ER(k) is the injective envelope of an i2-module k, and KR denotes the completion
of KR with respect to the m-adic topology.

In general a canonical module need not exist, but if it does, it is unique up to isomor-
phism. Fortunately we know that most rings possess canonical modules.

(1.11) PROPOSITION. (Herzog-Kunz [37]) Suppose a CM local ring R has a Noethe-

rian normalization T —> R. Then the R-module KR = Hom^i^, T) is a canonical module
ofR.

We are now ready to state the theorem of local duality.

(1.12) PROPOSITION. (Grothendieck [33, Theorem 6.3]) Suppose a CM local ring R

has the canonical module KR. Then, for any R-module M, there are natural isomorphisms

for any i.

As an easy consequence of this we obtain the following:

(1.13) COROLLARY. Let M be a CM module over a CM ring R having the canonical
module KR. Then Hom^(M, KR) is also a CM module and there is an isomorphism
M ~ Hom#(HoinR(M, KR), KR). Moreover each Ext#(M, KR) vanishes unless i = 0.
In particular Hom^( , KR) is an exact auto-functor on the category of CM modules over
R.

For later use we make the following remark which is also an easy corollary of (1.12).

(1.14) REMARK. Let R be the same as in (1.12) and let 0 -> KR - • L -> M -> 0 be
an exact sequence of CM iJ-modules where KR is the canonical module of R. Then the
sequence splits.

Actually this is the consequence of the fact that Ext^(M, KR) = 0. In other words, the

canonical module is an injective object in the category of CM modules.

E. Syzygies.

(1.15) DEFINITION. Consider an exact sequence of fl-modules;

0 —> N —> Fn_i —-> Fn_2 —-> > Fx —> Fo —• M — • 0,
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where each F* is a free i^-module. Then N is called an n-th syzygy of M. The reduced
n-th syzygy syzn(M) of M is the module obtained from N by avoiding all free direct
summands. Thus syzn(M) has no free direct summand and N ~ syzn(M) 0 F for some
free module F. Notice that the reduced n-th syzygy of M is uniquely determined by M
and n up to isomorphism. Note that, by definition, if M is free, then syzn(M) = 0 (n > 0).
Note also that if M has projective dimension p, then syzn(M) = 0 for any n > p.

Proposition (1.4) can be put in the following form in terms of syzygies.

(1.16) PROPOSITION. Let R be a CM local ring of dimension d. Then for any R-
module M and for any integer n thai is not less than d, syzn(M) is either a CM module
or a null module.

This provides a possible way of constructing new CM modules by taking syzygies or
reduced syzygies.

F. Henselian rings.

(1.17) DEFINITION. A local ring R is a Henselian ring if the following condition is
satisfied.

(1.17.1) Any commutative .R-algebra which is module-finite over R is a direct product
of local R-algebras.

Recall that an i2-module is called indecomposable if it has no nontrivial direct sum-
mands. There is a crucial fact concerning indecomposability of modules over a Henselian
ring.

(1.18) PROPOSITION. Let R be a Henselian local ring and lei M be an R-module.
Then M is indecomposable if and only if the endomorphism ring End#(M) is a local
algebra, that is, sums of nonunits in End#(M) are nonunits. This assures us that the
category of finitely generated R-modules admits the Krull-Schmidt theorem. Namely, any
R-module is uniquely a finite direct sum of indecomposable R-modules.

A famous theorem of Hensel asserts that complete local rings are Henselian rings. More
generally, analytic algebras defined below are also Henselian.

(1.19) DEFINITION. Let A; be a valued field. Thus there is a mapping v from k to the
set of nonnegative real numbers, which satisfies the conditions:

(1.19.1) v(x) — 0 if and only if x = 0. And v(xy) = v(x) • v(y), v(x + y) < v(x) + v(y)
fo r a n y x , y €  k.

T h e n c o n s i d e r a f o r m a l p o w e r s e r i e s / o v e r k i n n v a r i a b l e s {x\,X2,... ,xn} w i t h t h e
f o l l o w i n g c o n d i t i o n :
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(1.19.2) Write / as E«»i*'2...i**!1*? • • • xii (a*i»2 •••*» G *)• Then there are positive real

numbers ri, r2 , . . . , rn and AT such that v(a»1i2...t1»)rilr22 • • • r%n — ̂  ^or a ^ *i> l#2> • • • > 2n-

Call such series a convergent power series with respect to the valuation v. We denote
by k{xi,x2,... ,xn} the set of all convergent power series, and call it a convergent
power series ring. Notice that if the valuation is trivial, i.e. v(x) = 1 for any x ^ 0,
then all formal power series are convergent ones, thus k{x\, x2,... , zn} is the formal
power series ring.

An analytic algebra over k is defined to be a finite algebra over a convergent power
series ring. Any complete local ring containing a field is an analytic algebra with trivial
valuation. It is known that a local analytic algebra is a Henselian ring (Nagata [50,
Chapter 7]). If & is a perfect field, then every local analytic algebra is a homomorphic
image of a convergent power series ring over k (Scheja-Storch [57]). This, however, is not
true unless k is perfect. It is also known by Scheja-Storch [57, (8.10)] that all analytic
algebras are excellent rings.

(1.20) DEFINITION AND PROPOSITION. (Scheja-Storch [57]) Let R be a local
analytic algebra over a valued field k. Then a system of parameters {x\, x2,... , xj} for R
is called separable if the total quotient ring of R is a separable algebra over the quotient
field of the convergent power series ring k{x\iX2i... ,Xd}- If & is a perfect field, then
every reduced analytic algebra over k has a separable system of parameters.

G. Split morphisms.
We end this chapter by making several remarks about split morphisms. Recall first its

definition. A homomorphism / : M —• N of i2-modules is a split epimorphism if it

has a right inverse, that is, if there is a morphism g from N to M such that f - g = IN-

Similarly / is a split monomorphism if / has a left inverse. Notice that if / is a split

epimorphism (resp. a split monomorphism), then N (resp. M ) is isomorphic to a direct

summand of M (resp. N).

For later use we remark the following:

(1.21) PROPOSITION. Let R be a Henselian local ring and lei f : M -> L and
g : N —• L be homomorphisms of R-modules which are not split epimorphisms. Suppose
L is an indecomposable R-module. Then the homomorphism (f,g):M(&N—*L is not
a split epimorphism.

This is evident from (1.18). Actually, if (/,#) were a split epimorphism, then there
would be a : L —» M and b : L —• N satisfying f - a + g • b = 1L- Since End#(£) is
local, this would imply that either / • a or g • b is an automorphism on X, which is a
contradiction.
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The following is also easy to see.

(1.22) PROPOSITION. Assume that f : N -» M is a homomorphism of R-modules.
Lei N = Yli^i be a direct decomposition of N into indecomposable modules and let
Mj = M/f(^2ijLjNi). Consider R-homomorphisms fj : Nj —• Mj for any j which are
induced naturally from f'. If all of the fj are split monomorphisms, then so is f.



Chapter 2. AR sequences and irreducible morphisms

This chapter introduces some of the basic theory of AR sequences, which will play the
key role in later part of this book. Auslander and Reiten introduced this notion for their
theory of representations of Artinian algebras. They, and several others, developed the
theory to much wider classes of categories, including the category of CM modules, see [5]
for instance. In what follows, 'AR' always stands for 'Auslander and Reiten'.

In this chapter R is always a Henselian CM local ring with maximal ideal m and with
residue field k. We always denote the Krull dimension of R by d. It is convenient now to
introduce the notation for categories of modules. The category of all finitely generated
R-modules and .R-homomorphisms will be denoted by DJl(R). The full subcategory of
M(R) consisting of all CM modules will be denoted by £(R). Notice that M £ t(R) is
indecomposable if and only if End#(M) is a local ring, cf. (1.18).

Before giving a precise definition of AR sequences it is necessary to introduce a further
notion.

(2.1) DEFINITION. For an indecomposable CM module M €  t(R), we define a set of
short exact sequences S(M) as follows:

S(M) = {s:0->Ns^Es-+M-+0\

5 is a nonsplit exact sequence in £(R) with Ns indecomposable}.

In particular, an element of S(M) gives a nontrivial element of Ext#(M, Ns).

The next is a direct consequence of the definition.

(2.2) LEMMA. If M is an indecomposable CM module over R which is not free, then
S(M) is nonempty.

P R O O F : Let s be a nonsplit exact sequence 0—•iV—» i? —• M —• 0 in £(R) which ends
in M. Since M is nonfree, there exists at least one such exact sequence. For example, it
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is enough to take E as a free cover of M. Decompose N into indecomposable modules
as N = £,• Ni and let Ej be Ej Yli^j N{. Consider new exact sequences SJ : 0 —• Nj —*
Ej ^ M —* 0. Since 5 is nonsplit, one of the sequences ŝ  is also nonsplit (1.22) and thus
it lies in S(M). I

(2.3) DEFINITION. Let s and * be two elements of S(M).
(2.3.1) We write s >t if there is an / 6 Hom/^JV,, JV*) such that Ext^(M,•/)(«) = 1 In
this case we say that s is bigger than < or t is smaller than s. This is equivalent to the
existence of a commutative diagram:

0 > JV, > £ , > M • 0

'i i i
0 • Nt > £< > M • 0.

(2.3.2) We write s ~ t if / is an isomorphism above in (2.3.1). We often identify s with
^ when s ~ t.

(2.4) LEMMA. Lei M be an indecomposable CM module and let s and t be in S(M).
If s > t and t > s, then we have s ~ t. In particular S(M) is a well-defined partially
ordered set.

PROOF: There are, by definition, ii-homomorphisms / : Ns —• Nt and g : Nt —> Ns

satisfying Ext^(M, f)(s) = t and Ext^(M,#)(<) = s. If we denote the composition g • /
by h, then we have Ext^(M, h)(s) = s. Since both Ns and Nt are indecomposable, it is
enough to show that h is an isomorphism. Thus the lemma follows from the following:

(2.5) LEMMA. Let s be an element of S(M) and let h be an endomorphism of Ns. If
Ext^(M, h)(s) = s, then h is an automorphism of Ns.

PROOF: Suppose h is not an isomorphism. Then h belongs to the Jacobson radical of

End#(iV5) and hence some power of h is in m End#( JV5). We may thus assume that h itself

is in mEnd^(7V5). Then, for any integer n, we have hn = J2iain9in for some am €  tnn

and gin €  EndR{Ns). Therefore 5 = Ext^(M, hn)(s) = EiainExtl
R(M,gin){s) is in

mn Ext^(M, Ns) for any n. Thus we conclude that 5 = 0 as an element of Ext^(M, Ns)

which is clearly a contradiction, for s is nonsplit. |

The partially ordered set S(M) has the following property:

(2.6) LEMMA. Let M be an indecomposable CM module and let s : 0 -+ Ns -+ Es i
M -> 0 and t : 0 - • Nt - • Et -^ M -» 0 be in S(M). Then there is an element u €  S(M)
such that s > u and t > u.

PROOF: Consider an exact sequence 0 — • i V — > i £ - ^ M — • ( ) , where E = Es 0 Et and

N is t h e kernel of t h e h o m o m o r p h i s m (p = (p,q). Decompose N in to indecomposab le
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modules as N = £ t Ni and denote Ej = E/ J2i?j N{. Then we know from (1.22) that one
of the sequences uj : 0 -> Nj; -> Ej; - • M -> 0 is in 5(M), say ux €  5(M). Then, from
the definition, it is easy to see that s > u\ and t > u\. |

(2.7) COROLLARY. Let M be an indecomposable CM module. If s is a minimal
element in S{M), then it is minimum in S(M).

We are now ready to define AR sequences.

(2.8) DEFINITION. Let M be an indecomposable CM module over R. A short exact
sequence s : 0 —• Ns —• Es —> M -> 0 is an AR sequence ending in M if s is the
minimum element in S(M). An AR sequence ending in M is, if it exists, uniquely deter-
mined by M. In particular the modules Ns and Es are also unique up to an isomorphism.
If 5 is the AR sequence ending in M, then we denote Ns by r(M) and call it the AR
translation of M.

This definition of AR sequences looks very theoretical. We shall rewrite it for practical
use.

(2.9) LEMMA. Let M be an indecomposable CM module and let s : 0 —> Ns —» Es •£*>
M —* 0 be in S(M). Then the following two conditions are equivalent:
(2.9.1) s is the AR sequence ending in M;

(2.9.2) For any R-homomorphism q : L —• M in £(R) which is not a split epimorphism^
there is an R-homomorphism f : L —> Es such that q = p • / .

PROOF: (2.9.2) => (2.9.1) Let t : 0 -»• Nt -+ Et -^ M -+ 0 be a sequence in S(M) with

t < s. We want to show that s < t. Since q is not a split epimorphism, we know from

(2.9.2) that there is an / : Et - • Es satisfying q = p- f. Denote by g : Nt -> Ns the

restriction of / on Nt. Then it follows that Ext}^(M, #)(<) = 5, that is, s < t.

(2.9.1) => (2.9.2) Let q : L —• M be a homomorphism which is not a split epimorphism.

We construct a new exact sequence

where <p denotes the homomorphism (p, q) and Q is the kernel of <p. Since both p and g
are nonsplit, the sequence u is also nonsplit by (1.21). Denoting by h the restriction of
the natural monomorphism Es —• Es 0 L on Ns, we see that /i is a homomorphism from
JV5 into Q with the property Ext^(M, h)(s) = w. Decompose Q into indecomposable
modules to write Q = £«Q«, hence Ext^(M, Q) = E;Ext^(M,<2;). Write « = £ z u;
along this decomposition. Since u ^ 0 in Ext^(M, <2), one of the it; is nonsplit. Denote it
by t. It can be seen from the definition that t is an element of S(M) and that s > t. Then
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from the assumption (2.9.1) we see that s ~ t. In particular there is a homomorphism
g : Q —* Ns which makes the following diagram commutative:

0 • Q > EseL > M • 0

•1 r\ II
0 > Ns > Es > M > 0

Denoting by / t h e composition of the homomorphism / ' appearing in the middle of the
diagram with the natural monomorphism L —• ES®L, we obtain q = pf. This completes
the proof. |

Auslander and Reiten, who initiated the theory of AR sequences, called an AR sequence

an 'almost split' sequence, which is apparently named after the property (2.9.2); see

Auslander-Reiten [9].

We next make a very important definition.

(2.10) DEFINITION. Let M and N be CM modules over R and let / : M -> N be
an R-homomorphism. Call / an irreducible morphism if the following two conditions
are satisfied:

(2.10.1) / i s neither a split epimorphism nor a split monomorphism.

(2.10.2) If a commutative diagram

M -U N
g\ /h

X

in £(R) is given, then either g is a split monomorphism or h is a split epimorphism.

(2.11) LEMMA. Let M be an indecomposable CM module over R and lei s : 0 —• N —•
E -^ M —* 0 be an element of S(M). Suppose thai s is the AR sequence ending in M.
Then p is an irreducible morphism.

PROOF: It suffices to check that the homomorphism p satisfies the condition (2.10.2). So

consider a commutative diagram
E - ^ M

g\ /h
X

in £(R) and assume that h is not a split epimorphism. It is enough to see that g is a

split monomorphism. Let G = E ® X and let <p be a homomorphism (p, h) : G —* M.
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Then we have the commutative diagram:

M

M • 0 ,

where Q is the kernel of <p and j = (j. Since both p and h are nonsplit, <p is also
nonsplit by (1.21). Decompose Q into indecomposables to write Q = J2iQi a n d denote
Gi = G/^2j^iQj. By (1.22), there is an i such that the sequence Si : 0 —• Qi —> Gi —•
M —> 0 is nonsplit, hence 5,- 6 S(M). Notice that the following commutative diagram
exists:

0 • Q • G —^-> M > 0

I 4
0 > Qi > Gi • M • 0,

where A; is the natural projection. Combining two commutative diagrams above, we

obtain Si < s. Since s is the minimal element in S(M), we see that s ~ Si. Then we

know from (2.5) that the composition k • j is an isomorphism. Writing k = (a, b) along

the decomposition G = E 0 X, we conclude that 6 • g : E —» Gi is an isomorphism. In

particular we have {(6 - g)~lb} -g = 1#, and this shows that g is a split monomorphism. |

We immediately get:

(2.12) COROLLARY. Let M and L be indecomposable CM modules over R and assume
that there exists an AR sequence s:0-^N—+E-^+M-^0 ending in M. Then the
following two conditions are equivalent:
(2.12.1) There is an irreducible morphism from L to M;
(2.12.2) L is isomorphic to a direct summand of E.

PROOF: (2.12.1) => (2.12.2) Let / : L -> M be an irreducible morphism. Since / is
not a split epimorphism and since s is an AR sequence, we see from (2.9) that there is a
homomorphism g : L —• E such that / = p- g. It follows that g is a split monomorphism,
for / is irreducible and p is not a split epimorphism.

(2.12.2) => (2.12.1) Assume the decomposition of E is given by E = L 0 Q. Denote
p = (f,g) along this decomposition. We show that / is actually an irreducible morphism
from L to M. For this, let

L -L M
h\ / k

X
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be a commutative diagram in £(R) and suppose that k is not a split epimorphism. We
want to verify that h is a split monomorphism. Consider the commutative diagram

Q - ^ M

e \

where 0 = ( 0 J)« Since p is irreducible (2.11) and since (k,g) is not a split epimorphism
(1.21), we see that 9 is a split monomorphism, and hence h itself is a split monomor-
phism. |

As a corollary of this proof we obtain the following:

(2.13) COROLLARY. Let M and L be indecomposable CM modules over R and assume
thai there exists an AR sequence s:0—>N^E—+M—+0 ending in M. Then any
irreducible morphism g from L to M is obtained in the following way: There is a split
monomorphism h from L to E such that g = p h.

Recall that there is a duality in our category £(R) as was seen in (1.12) and (1.13).
We will, thus, have definitions and lemmas that are dual to the above. We will list them
below and leave proofs to the reader as exercises.

(2.1)' DEFINITION. For an indecomposable CM module N €  £(R), we define a set of
short exact sequences Sf(N) as follows:

S'(N) = {s : 0 -+ N — Gs -> Ms -> 0 |

5 is a nonsplit exact sequence in £(R) with Ms indecomposable}.

In particular, an element of S'(N) gives a nontrivial element of Ext^(M5, N).

If the CM ring R has the canonical module KR , and if we denote by ( )' the canonical
dual (e.g. M1 = Hom/^(M, KR), S1 = Hom^(s, KR) etc.), then a nonsplit short exact
sequence 5:0—> N —>G—»M—>0 belongs to Sl(N) if and only if it is in S(M), which
is also equivalent to s1 €  S(N'); see Corollary (1.13).

(2.2)' LEMMA. If N is an indecomposable CM module over R which is not isomorphic
to the canonical module KR, then S'(N) is nonempty.

(2.3)' DEFINITION. Let s and t be two elements of S'(N).
(2.3.1)' We write 5 >' t if there is an / €  EomR(MtiMs) such that Ext^(/, N)(s) = t.
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This is equivalent to the existence of a commutative diagram:

0 • N > Gs > Ms • 0

I I ']
0 > TV • G« > Af« > 0.

(2.3.2)' We write s ~ ' < if / , in (2.3.1)' above, is an isomorphism. We often identify s
with t when s ~' t.

If R has a canonical module and if ( )' denotes the canonical dual, then note that
s >' t in S'(N) if and only if s1 > t' in S(N').

(2.4)' LEMMA. Ze* N be an indecomposable CM module and lei s and t be in S'(N).
If s >' t and t >' s, then we have s ~' t. In particular S'(N) is a well-defined partially
ordered set.

(2.5)' LEMMA. Let s be in S'(N) and let h be an endomorphism of Ms. If
Ext^hj N)(s) = s, then h is an automorphism of Ms.

(2.6)' LEMMA. Let N be a CM module and let s and t be in S'(N). Then there is an
element u €  S'(N) such that s >' u and t >' u.

(2.7)' COROLLARY. Let N be an indecomposable CM module. If s is a minimal ele-
ment in Sl(N), then it is minimum in S'(N).

(2.8)' DEFINITION. Let N be an indecomposable CM module over R. A short exact
sequence s : 0 —• N —• Gs —* Af, —• 0 is an AR sequence starting from iV if
s is the minimum element in S'(N). An AR sequence starting from N is, if it exists,
uniquely determined by N. In particular the modules Af5 and Gs are also unique up to
an isomorphism. If s is the AR sequence starting from N, then we often denote Ms by

(2.9)' LEMMA. Let N be an indecomposable CM module and let s : 0 - • N - i Gs ->
Ms —> 0 be an element in Sf(N). Then the following two conditions are equivalent:
(2.9.1)' s is the AR sequence starting from N;
(2.9.2)' For any R-homomorphism r : N —• L in £(R) which is not a split monomor-
phism, there is an R-homomorphism f : Gs —• L such that r = f • q.

(2.11)' LEMMA. Let N be an indecomposable CM module over R and let s : 0 -> N - t
G —> Af —> 0 be an element of S'(N). Suppose thai s is the AR sequence starting from
N. Then q is an irreducible morphism.

(2.12)' COROLLARY. Let N and L be indecomposable CM modules over R and assume
that there exists an AR sequence s:0—> N -2* G —»Af—>0 starting from N. Then the
following two conditions are equivalent:
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(2.12.1)' There is an irreducible morphism from N into L;
(2.12.2)' L is isomorphic to a direct summand of G.

(2.13)' COROLLARY. Let N, L and s be the same as in (2.12)'. Then any irreducible
morphism g from N to L is obtained in the following way: There is a split epimorphism
h from G to L such that g = h • q.

We shall prove that two definitions of AR sequences that are dual to each other will be
the same in the following sense.

(2.14) LEMMA. Let s : 0 —• N —• i£ —• M —• 0 be a nonsplit short exact sequence in
£(#). Assume that both N and M are indecomposable. Then the following are equivalent:
(2.14.1) s is the AR sequence ending in M;
(2.14.2) s is the AR sequence starting from N.

PROOF: We only prove that (2.14.1) implies (2.14.2). The reverse implication is similar
and is left to the reader.

Let t be an element of S'(N) with t <f s. We want to show that s ~' t. By definition,
there is a commutative diagram

0 • N —*—> E —^—• M • 0

0 • N —b—+ Gt —"-^ Mt • 0.

Suppose g is not an isomorphism. Then it is not even a split epimorphism. Thus from
(2.9) there is 0 : Mt —• E such that p • 0 — g. Then / — 0 • a induces a homomorphism
<p from Gt to N satisfying q • <p = f — 0 • a, because p • (/ — 0 • a) = 0. Thus we have
q<P'b = fb — Oa'b = q, therefore (p • b is the identity mapping on N. This contradicts
the fact that t is nonsplit. Thus g must be an isomorphism, and hence s ~' t. I

We end this chapter by defining what will be one of main topics of the next chapter.

(2.15) DEFINITION. We say that the category C(R) admits AR sequences if, for
any indecomposable CM module M over R which is not free, there exists an AR sequence
ending in M.

If the CM ring has the canonical module, then the canonical dual gives an exact anti-
equivalence of the category t(R) onto itself. Therefore that t(R) admits AR sequences
is equivalent to the existence of an AR sequence starting from N for any indecomposable
CM module N which is not isomorphic to the canonical module.
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Chapter 3. Isolated singularities

In this chapter we intend studying in detail the condition that the category £(R) admits
AR sequences. It will turn out that this is equivalent to the ring R having only an isolated
singularity. This result was first proved by Auslander [7].

In this chapter R is a Henselian CM local ring with maximal ideal tn and with residue
field k = R/vx. We always assume that R has the canonical module KR. AS before d
denotes the Krull dimension of R and £(R) is the category of all CM modules over R.

We begin with the definition of isolated singularities.

(3.1) DEFINITION. The ring R is an isolated singularity (or R has only an isolated
singularity) if the localizations Rp are regular local rings for prime ideals p of R which
are distinct from tn.

For example, if d = 1, then R is an isolated singularity if and only if it is reduced (i.e.

having no nontrivial nilpotent elements). If d = 2, then it is equivalent to requiring R to

be a normal integral domain. The reader should prove this as an exercise.

The goal of this chapter is to prove the following theorem.

(3.2) THEOREM. (Auslander [7]) The following two conditions concerning R are

equivalent:

(3.2.1) R is an isolated singularity;

(3.2.2) The category C(R) admits AR sequences.

In order to prove this, several lemmas will be necessary.

(3.3) LEMMA. The following are equivalent:

(3.3.1) R is an isolated singularity;

(3.3.2) For any two CM modules M and N over R, Extl
R(M,N) is a module of finite

length.
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(3.3.3) Any CM module over R is locally free on the punctured spectrum of R. (We say
that M is locally free on the punctured spectrum of R if Mp is ify-free for any
prime p distinct from m.)

PROOF: (3.3.1) => (3.3.3): Let M be a CM module over R and let p be a prime ideal of

R with p / m. Then Mp is a CM module over Rp. Hence it follows from (1.5.1) that Mp

is ify-free, for Rp is regular.

(3.3.3) => (3.3.2): Let M and N be CM modules. For a prime ideal p ^ m, we have,

since Mp is free over RP) Ext^(M, N)p = Ext)2p(Mp) Np) = 0. Because this holds for any

prime p other than m, Ext}^(M, N) is a module of finite length.
(3.3.2) => (3.3.1): Let p be a prime ideal of R which is different from m. Consider a

free resolution of R/p to obtain an exact sequence

0 —• M —> Fd_x —> Fd_2 —> > ^i —• R —> R/P —• 0,

where each F; is a free module over R. Recall that M is a CM module over R] (1.4).
It will be sufficient to show that Mp is a free module over Rp. Actually if this is true,
then the residue field (R/p)p of Rp has finite projective dimension and hence Rp must
be regular as required.

We now prove that Mp is free. For this, consider the first syzygy of M and get an exact
sequence

(*) 0 —+ N —+ Fd —> M —> 0,

where Fd is free over R. Recall again that N is a CM module over R. Therefore it

turns out from the assumption that Ext^ (MPi Np) = Ext^(M, N)p = 0, which precisely

means that the localized sequence 0 —• Np —• (Fd)p —• Mp —• 0 splits and so Mp is free

over Rp. |

By this lemma Theorem (3.2) follows from the following more general one.

(3.4) THEOREM. For an indecomposable non-free CM module over R} the following
two conditions are equivalent:
(3.4.1) M is locally free on the punctured spectrum of R;
(3.4.2) There is an AR sequence ending in M.

PROOF OF (3.4.2) => (3.4.1): Suppose that M is not locally free on the punctured
spectrum of R, so that Mp is not ify-free for some p ^ m. Consider the first syzygy
o f M ; 0 - » Z - > F - » M - > 0 , where F is R-hee and L is CM over R. Since this
is not split even when we take the localization at p, we see that Ext^(M, L)p ^ 0.
In particular, we have Ext^(M, N)p ^ 0 for some indecomposable summand N of L.
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Therefore we may find an element 5 G Ext}^(M, N) and r €  tn — p such that rns ^ 0
for any n > 1. Remark that each rns gives an element of S(M). From the assumption
there exists a sequence t : 0 -+ Nt -* Et —> M —• 0 with the property t < rns for
all n. This means that, for each ra, there is a homomorphism fn : TV —• Â  such that
Ext^(M,/n)(rn5) = *. Since Ext^(M,/n) is an iMiomomorphism of Extl

R(M,N) to
Ext}j(Af,JVt), it follows that t €  rn ExtR(M, Nt) for all n. This implies that t = 0,
because r €  m and n =̂1mn Ext#(M, AT) = 0. This is absurd, since t is nonsplit. |

The other part of Theorem (3.4) is much harder to prove and we need several more
definitions and results.

(3.5) DEFINITION. Let M be a finitely generated module over R. Consider a fi-
nite presentation of M by free modules; F\ —• FQ —* M —• 0. Then put tr(M) =
Coker(Hom^(/, R)) and call it the Auslander transpose of M. Note that tr(M) de-

pends on the presentation of M. Actually another presentation F[ —• FQ —> M —> 0
may give a distinct module. However, it can be easily seen that there are free modules
F and G such that Coker(Homfl(/, R)) 0 F ~ Coker(Homi?(/

/, R)) © G. (Prove this.)
Thus tr(M) is unique up to free summand. Later on in this book, we shall deal only
with properties that are independent of free summands of tr(M) and so the above 'rough'
definition will be sufficient. The reader should note, for instance, that Torf (tr(M), )
and Ext^(tr(M), ) are uniquely determined if i > 1.

Concerning the Auslander transpose, the following result is basic. We do not prove it,
but refer the reader to Evans-Griffith [29] or Auslander-Bridger [8].

(3.6) PROPOSITION. Suppose a finitely generated R-module M is locally free on the
punctured spectrum of R. Then M is CM if and only if Ext^(tr(M), R) = 0 (1 < i < d).

(3.7) DEFINITION. Let M and N be finitely generated ^-modules. Denote by
^P(M, N) the set of i^-homomorphisms of M to N which pass through free modules.
That is, an Z2-homomorphism f : M —* N lies in ^P(M, N) if and only if it is factored as
M -+ F -+ N with F free. Note that ^3(M, N) is an #-submodule of Hom^(M, N). We
also denote

Homil(M, N) = KomR(M, N)/V(M, N)

and write End#(M) instead of Hom^(M, M). We remark that End#(M) is a ring, for
^P(M, M) is a two-sided ideal of End#(M). Consequently, if M is indecomposable, then
EndR(M) is a local ring, by (1.18). Notice also that Hom^fM. N) is a right EndR(M)-
module and a left End#(JV)-module by the natural right (resp. left) action of End#(M)
(resp. EndR(N) ) on Hom*(M,iV).

It is possible to characterize Hom#(M, TV) in the following manner.
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(3.8) LEMMA. For finitely generated R-modules M and N, there is an exact sequence

EomR(My R)®RN - U KomR(M, N) —• Hom^M, N) —• 0,

where q is defined by

q(f ® x)(y) = f(y)x (x G N,y G MJ G RomR(M, R)).

PROOF: It suffices to show that the image of q is exactly ^P(M, N). Defining ix : R —>
N (x e N) by ix(r) = rx, we see that q(f (8) a:) = ix • / . Since this actually goes through
the free module R, we obtain q(f ® z) G <P(M,N). Conversely, let h G 3*(M, N).
By definition, h is a composition of two homomorphisms a : R^ —• N and b : M —*
R(n\ Fixing a free basis {ei\i = 1, 2 , . . . , n} of #(n), we may write 6 as £ 6,( )et- (6t G
HomJR(M, i?)). Then it is easy to see that h = J2i q(bi <8) a(e«)), therefore /i lies inside the
image of q. |

(3.9) LEMMA. Xe< M and N be finitely generated R-modules. Then we have a natural
isomorphism of End/?(M) x EndR(N)-modules:

Homi?(M, N) - Torf (tr(M), AT).

PROOF: Before proceeding to the proof, let us comment on the action of End^(M) x
EndR(N) on Torf (tr(Af), N). Let / be an element of EndR(N). Then Torf (tr(Af), / )
induces an endomorphism on Torf (tr(M), N). Since Torf (tr(M),/) = 0 for any / G
yp(N, N), this gives a left action of EndR(N). On the other hand, if g is an element of
End#(M), then g will induce a homomorphism of the presentation of M, that is, there
is a commutative diagram

0

where each F{ is a free module. Therefore g induces a mapping of tr(M) into itself. We
denote this by tr(g). We should remark that this notation has the same ambiguity as does
tr(M). Note, though, that Torf (tr((/), N) is determined definitely by g and N, because
Torf (F, ) and Torf (h, ) will vanish when F is free and h is a homomorphism passing
through F. Therefore Torf (tr(^), N) gives an action of jEndii(M) on Torf (tr(M), N).
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Now we prove the lemma. Consider a presentation of M by free modules; F\ —• FQ —•
M —» 0. Then, by definition, we have the following exact sequence:

0 —> Hom#(M, R) -*-> EomR{F0j R) - ^ Hom#(Fi, R) —• tr(M) —• 0.

Therefore, we get an isomorphism

Torf (tr(M), N) ~ Ker(/* 0 N)/(j 0 l)(Homfl(M, R) 0 N).

Here, remarking that there is an isomorphism h : Ker(/* 0 N) ~ Ker(Hom#(/, N)) ~
Hom/̂ (M, N), we see that the homomorphism q in (3.8) is equal to j 0 1 through this
isomorphism. For it is evident from definition that h{(j 0 l)(rci* 0 n)}(a;) = h(j(m*) 0
n)(x) = m*(x)n = g(m* 0 w)(sc) for a; €  M, n €  N and m* €  Hom^(M, it). Thus we
conclude from (3.8) that Torf (tr(M), N) ~ HomA(M, TV*) as an it-module. Since this
isomorphism is natural, it is an isomorphism of End#(M) x End#(7V)-modules. (The
reader should check this.) |

(3.10) LEMMA. Let M and N be CM modules over R. Suppose M is locally free on
the punctured spectrum of R. Then putting AL = EiidR(L) for any CM module L over
R, we have the following isomorphism of AM X A/V-modules:

Extjj(Hom#(iV, M), KR) ~ Ext^(M, (syzdti(N))')1

where ( )' denotes the canonical dual Hom^( >KR).

PROOF: There are two spectral sequences converging to the same module Hn:

lEp
2
q = Extytr(tf), Ext^(M, KR))

and
f ), M), KR) =• ^n.

Here we know from the local duality theorem that ExtJj(M, KR) = 0 if q > 1. In
particular we see that ^ j ^ = 0 for g > 1. The first sequence lE is then degenerate and
gives rise to an isomorphism

(3.10.1) ffn~Extk(tr(tf),M').

On the other hand, from the assumption that each localized module Mp is free over Rp
if p is a prime ideal of R with p ^ m, it follows that Tor^(tr(JV), M) is an it-module
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of finite length for q > 1. Hence by the local duality theorem 2E^q = 0 if q > 1 and if
p ^ d. In particular we see that Hd+l ~ Ext£(Torf (tr(AT), Af),KR). Combining this
with (3.10.1) we have an isomorphism of ^-modules:

Ext£(Torf (tr(i\0, M), KR) ~ Ext£+1(tr(7\0, M1).

Since this is a canonical isomorphism, it can easily be seen that it is actually an isomor-
phism of AM x AN-modules. Furthermore from the definition of reduced syzygies we
obtain the following isomorphisms of AM X Ajy-modules:

Ex4+1(tr(iV), M') ~ Ext^syz1 tr(iV), M')

where the last module is isomorphic to Ext1(M, (syz^tr(iV))/) by local duality. Conse-
quently we have an isomorphism of R-modules

Ext£(Torf (tr(A0, M), KR) ~ Ext̂ CM, (syz^trC^))'),

which is natural on both variables M and N) and hence is an isomorphism of End#(M) x
End#(N)-modules. The lemma follows from this with (3.9). |

We are now ready to prove the second part of Theorem (3.4). More precisely we can
show the following

(3.11) PROPOSITION. Let M be an indecomposable CM module over R which is
locally free on the punctured spectrum of R. If M is not free, then there always exists an
AR sequence ending in M, and the AR translation is given by

r(M) = (syzdti(M))'.

PROOF: Let A = AM be End^(M) as in (3.10) and let J be the Jacobson radical of A.
First we note that A is an Artinian ring which, of course, is local. In fact we know from
(3.8) that there is an exact sequence

, R) ®R M -±+ Endtf(M) —> A —• 0.
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Since Mp is a free ify-module for any prime ideal p ^ m, we observe that (q)p is an
isomorphism for those p. We thus have Ap = 0 (p ^ m), which exactly means that A is
an Artinian module over R. Hence it is an Artinian ring.

We have already shown that A is an Artinian local ^-algebra, therefore the injective
envelope EA{A/J) of A/J as a right A-module is given by Ext#(A, KR). Thus we obtain
from (3.10) the following isomorphism of right A-modules:

(3.11.1) EA(A/J) ~ Ext),(M, (syzrftr(M))/).

Let s be an element of the right hand side of (3.11.1) which corresponds to the socle
element of EA(A/J). If we put r(M) = (syzrftr(M))', then we know from (1.16) that
T(M) is a CM module and s gives an exact sequence of the form 0 —• r(M) —+ E —>
M —* 0. We shall prove below that 5 is an AR sequence.

First assume that r(M) is indecomposable, which will be proved in the next lemma.
Then by definition s is an element of S'(r(M)). It suffices to show that s is minimal in
S'(T(M)). (See (2.8)'.) To this end, let t : 0 -+ r(M) -> G -+ L -> 0 be another element
of Sf(r(M)) which satisfies t <' s. We want to show that t ~ ; s. Since t <f 5, we have an
i^-homomorphism f : L —* M with Ext^(/, r(M))(s) = t. Here the homomorphism of
right ^-module Ext^(/, r(M)) : Ext^(M5 r(M)) -> Ext^(L, r(M)) is a monomorphism,
for it sends the socle element s to a nontrivial element t. This precisely means by (3.10)
that Extjk(Hoinft(MT /)T KR) is a monomorphism. This is equivalent by local duality to
HoiriflfM, / ) : Hom#(M, L) —* Hom#(M, M) being an epimorphism of right A-modules.
Thus by the definition of Horn, Hom^(M,/) : Hom^(M, L) —> Hom^(M, M) is also
an epimorphism. It then follows that / is a split morphism. Since both M and L are
indecomposable, this shows that / is an isomorphism, hence s ~f t.

It remains to prove that r(M) is indecomposable. It is sufficient by the local duality
theorem to show that syzrf tr(M) is indecomposable. Thus the proposition follows from
the following lemma.

(3.12) LEMMA. Lei M be an indecomposable CM module over R which is locally free
on the punctured spectrum of R. Then syzrftr(M) is also indecomposable.

PROOF: We divide the proof into three cases.
Case 1. d = 0. By definition there is an exact sequence

(3.12.1) 0 —• HomB(M, R) —> Homfl(fb, R) -^* Homfl(Ji, R) —* tr(M) —• 0.

where F\ —*• Fo —•»- M —* 0 is a finite free presentation of M. Recall that syz° tr(M) is
the module obtained from tr(M) by avoiding free direct summand, see definition (1.15).
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Thus it is sufficient to show that tr(M) is indecomposable, if the presentation is minimal.
Suppose not. Then, after taking suitable free bases of Fo and JFI, the homomorphism
/* is expressed as a nontrivial direct sum of two matrices. Since the matrix of / is just
a transpose of that of /*, this shows that / is also decomposed as a direct sum of two
homomorphisms. Therefore M is decomposed, which contradicts the assumption.

Case 2. d = 1. Write X for the image of /* in the sequence (3.12.1). By definition,
X is a direct sum of syz1 tr(M) with a free module. Hence it is enough to show the
following: If A" = Xi 0 X2, then either X\ or X<i is free. For this, taking the minimal
free cover G —• Hom#(M, R) —> 0 of Honift(M, R), we have from (3.12.1) the following
exact sequence:

(3.12.2) G _£_^ Hom*(F0,fl) > X > 0.

Then the matrix of g is in the form f a . J according to the decomposition X = X\
Taking the R-dual of (3.12.2), we have the sequence

which must be exact, because Ext^(tr(M),i?) = 0 by (3.6). Therefore we see that
M = Coker(/) = lm(g*) = Im(a*) 0 Im(6*), hence either a = 0 or 6 = 0 because of the
indecomposability of M. This shows that one of X\ and Xi is free.

Case 3. d > 2. This case is the hardest part of the proof. First of all we observe the
following:

(3.12.3) Ext^(Hom/i(syz(itr(M),JR),JR) = 0 (1 < n < d-2).

For the proof of this, take a free resolution of tr(M) by d-th term:

0 —> N —> Fd_x —^ > Fi —> Fo —^ tr(M) —> 0,

where each Fi is a free ^-module and AT is a direct sum of syz^ tr(M) with a free module.
We know by (3.6) that the .R-dual of this sequence EomR(F0, R) -> Homi*(Fi,#) - •
• • • —> Hom^(F{/_i, R) —> Homit(Ar, R) —• 0 is exact. Since this gives a part of the free
resolution of Hom#(iV, R) and since the dual of this sequence is also exact, we see that

V, R), R) = 0 (1 < n < d - 2). Thus (3.12.3) follows from this.
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Now return to the proof of the lemma. Suppose syzrf tr(M) is decomposed a s l 0 F
with X =fi 0, Y ^ 0. We want to have a contradiction from this. We first note
that both Hom^(X, R) and Hom^(y, R) have projective dimension > (d — 1). In
fact, if Kom.R(Xj R) is free, then X is also free, because X is reflexive. In this case,
syz tr(M) contains a free summand and this contradicts the definition of reduced syzy-
gies. Thus Hom#(X, R) is nonfree, and likewise Hornby, R) is. If one of them has
project ive dimension < (d — 2), then, for some integer n (1 < n < d — 2), we have
Ext^Homj^X, R), R)^0or Ext^(Homil(r, R), R) ± 0 and contrary to (3.12.3). There-
fore both Hom^(X, R) and HOIIIR(Y, R) have projective dimension > (d— 1). In particular
we see that syz^~2(Hom^(X, R)) and syzrf~2(Hom#(F, R)) are neither null nor free.

Since we know from (3.6) that Ext£(tr(M), R) = 0 (1 < n < d), RomR(tr(M), R) is
isomorphic to the d-th. syzygy of Honift(syz tr(M), R) up to free summands. (Why?) On
the other hand, (3.12.1) shows that Hom^(tr(M), R) is the second syzygy of M. (Notice
that Hom#(Hom#(M, R), R) ^ M, for M is CM and locally free on the punctured spec-
trum of R.) Therefore M is isomorphic to the (d — 2)-th syzygy of Hom^(syz^ tr(M), R)
up to free summands. As a consequence, we obtain isomorphisms

M ~ s y z ^ H o m ^ s y z * tr(M), R))

^ , R)) 0 syzrf-2(Homil(y, R)),

where ~ stands for the isomorphism up to free summands. As remarked before, nei-
ther module in the last term is null, so we see that M is actually decomposed. This
contradiction proves the lemma. |

For later use we make the following remark which we have already shown in the proof
of (3.11).

(3.13) REMARK. Let M be a nonfree indecomposable CM module over R that is
locally free on the punctured spectrum of i2, and let r(M) = (syzrftr(M))' as in (3.11).
Then the AR sequence ending in M is a short exact sequence corresponding to the socle
element in Ext^(Af,r(M)).
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Chapter 4. Auslander categories

In this chapter we will introduce Auslander's general theory by which he reached the
idea of AR sequences. We do this by considering Auslander categories. The proof of
Theorem (4.18) is one of our main purposes here. Theorem (4.22) is also a remarkable
result due to Auslander. The theorems can be stated without using Auslander categories,
but they are required in its proof.

We keep the notation of the previous chapter, so that R is a Henselian CM local ring
with maximal ideal tn and with residue field k. The dimension of R is denoted by d.
Furthermore we always assume that R has the canonical module KR. We denote by
£(#), or more simply £, the category of all CM modules over R and jR-homomorphisms.
We also denote by (Ab) the category of all Abelian groups.

The idea is to move our attention from C into the category of functors on € .

(4.1) DEFINITION. Denote by Mod(<£) the category of contravariant additive functors
from £ to (Ab). Namely, objects in Mod(C) are the contravariant functors F : C —• (̂ 46)
with F(M © N) = F(M) 0 F(N) for any M and N in C and, morphisms from F to G
are the natural transformations of functors from F to G.

For a morphism t : F —• G in Mod(C) we may define the kernel and the cokernel of i
as follows:

Ker(f )(Af) = Ker(<(Af)) and Coker(<)(M) = Coker(<(M))

for any object M in C It is an easy exercise to show that Mod(£) is an Abelian category.

For simplicity we write ( , M) instead of HOIIXR( , M) for any finitely generated
module M. Note that ( , M) is in Mod(C). Therefore we have a covariant functor
c : (L -> Mod(£) by sending M to ( , M).

(4.2) REMARK. For any M €  t and F €  Mod(C), the Abelian group F(M) has the
structure of an i£-module in a natural way. In fact, for an element a of R, if we denote
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by ia the multiplication map by a on M, then F(ia) gives an action of a on F(M). More
generally this shows that F(M) is a right End(M)-module. It is also easy to see that
HomMod((r)(F, G) is an tf-module for F, G €  Mod(C).

The following is known as Yoneda's lemma.

(4.3) LEMMA. The functor c : C -> Mod(£) is fully faithful

PROOF: It suffices to show the following is an isomorphism:

where <p is given by (p(f) — ( , / ) for any / €  (M, N). If (p(f) = <p(g), then we get f — g

by evaluating these natural transformations at R. This shows that <p is a monomorphism.
Next, let t : ( , M) - • ( , N) be any morphism in Mod(£). Then define g €  (M, N)
t>y g = *(M)(1M)« It is, then, easy to see that <p(g) = t. (Why ?) Hence (p is an
epimorphism. |

(4.4) DEFINITION. An object F in Mod(C) is said to be finitely generated if there
is an epimorphism ( , M) —• F with M €  £. And F is finitely presented if there is
an exact sequence in Mod(<£) ; ( , N) —• ( , M) —> F —• 0 with M and AT in <£.

To see the following is so easy that we leave its proof to the reader as an exercise.

(4.5) Exercise. For finitely generated objects F and G in Mod(C), HomMoc[(£)(i'1, G) is a
finitely generated .ft-module.

(4.6) DEFINITION. We denote by mod(£) the full subcategory of Mod(£) consisting

of all finitely presented functors, and call it the Auslander category of <£.

Note that the functor c defined in (4.1) makes it possible to regard C as a subcategory
of Mod(£). Moreover (4.3) shows that C is a full subcategory of mod(C) .

As remarked before it can be easily seen that Mod(C) is an Abelian category. We will
show in this chapter that mod(C) is also an Abelian category. The most difficult part of
this is to show that the kernel of a morphism in mod(<£) is a finitely presented functor,
while the following are rather easy to prove.

(4.7) LEMMA.

(4.7.1) If we are given an exact sequence F —• G —• H -+ 0 in Mod(€) , and if F and
G are finitely presented, then so is H.
(4.7.2) If we are given an exact sequence 0—>F^G-^H—>0 in Mod(C) with F and
H finitely presented, then G is also a finitely presented functor.

PROOF: We leave the details to the reader and only outline the proof here. For (4.7.1)
write finite presentations of F and G as follows: ( , N) —• ( , M) —> F ^> 0, ( , P) —•
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( , Q) -> G -* 0. Then H has the presentation of the form ( , M)e( , P) -> ( , Q) - •

In (4.7.2) if the presentations of F and # are given by ( , N) -> ( , Af) -+ F -> 0
and ( ,5) -> ( ,T) - • fT - • 0, then the following is exact: ( , N) © ( , S) -*
( , M ) 0 ( , T ) - G - > 0 . •

The next proposition gives some good reasons for considering Auslander categories.

(4.8) PROPOSITION. When we regard £ as a subcaiegory of Mod(£) by the functor
c, any objects in <£ are protective in Mod(<£). In particular, they are also projective in
mod(C).

PROOF: Consider a diagram in Mod(C) with an exact row:

F —£-> G • 0

where M is in C We will show that there is a morphism g from ( , M) to F so that
p- g = / . To do this, let E = End#(M). Evaluating the above diagram at M, we have a
diagram of right £"-modules with an exact row:

p(M)

F(M) -—> G(M) > 0

f(M)]

E.
Since it is evident that E itself is a projective i£-module, we will have an E'-module homo-
morphism q : E —* F(M) with f(M) = p(M) • g. Now define a natural transformation of
functors g : ( , M) -> F by p(X)(^) = F(v?)(g(lM)) for any X €  C and any <p G (X, M).
Then it is immediate that g satisfies p • g — f\ and the proposition follows. |

(4.9) REMARK. Let F be in mod(£). Then by definition we have an exact sequence

(4.9.1) ( ,N)-U( , M ) — > F — > 0 .

Here we know from Yoneda's lemma (4.3) that q is of the form ( , / ) for some / G (N, M).

Denoting by L the kernel of / , we have an exact sequence of R-modules: 0 —• L —• N -^
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M. Suppose here that F(R) = 0. Then / is an epimorphism and so L is also a CM
module over R\ (1.3.2). As a consequence we have an exact sequence in mod(<£) :

(4.9.2) 0—+( , £ ) — > ( ,N)—>( ,M)^F—> 0.

We see by (4.8) that this gives a projective resolution of F in mod(<£). Therefore we have
proved that, if F(R) = 0, then F has projective dimension at most 2 in mod((£).

(4.10) DEFINITION. An object S{± 0) in Mod(£) is called simple if it contains no
nontrivial subfunctors. That is, if T is a subobject of S in Mod(C), then we must have
either T = 0 or T = 5.

(4.11) Example. Let M be an indecomposable module in <£. Define the functor SM €
Mod(C) as follows:

For an indecomposable module N in £, SM{N) = EndR(N)/ rad(End#(JV)) if N ^ M,
and SM(N) = 0 otherwise.

We remark that the additive functor SM is uniquely determined by this property.
Furthermore the functor is simple. For, if F is a nontrivial subfunctor of 5 M , then
F(M) ^ 0 and F(N) = 0 if N is indecomposable and is not isomorphic to M. Since
F(M) is an End/*(M)-submodule of SM(M) by (4.2), we see that F(M) = SM(M). Thus
SM is a simple functor.

We can see that the converse is also true.

(4.12) LEMMA. An object in mod(£) is simple as an object in Mod(£) if and only if
it is isomorphic to SM for some indecomposable CM module M.

PROOF: Let 5 ^ 0 €  mod(C) be a simple object in Mod(C). Taking an indecomposable

CM module M with S(M) ^ 0, we can see that S(M) is a finitely generated End#(M)-

module, (4.2), so that it has SM(M) as a quotient module. Then one can construct a

natural transformation TT : 5 —• SM such that TT(M) is an epimorphism of an End#(M)-

module. Therefore, by the simplicity of 5, 5 ~ SM- I

The following shows why we are interested in simple functors.

(4.13) PROPOSITION. Let M be an indecomposable CM module which is not free.
Then the following two conditions are equivalent:
(4.13.1) The functor SM is finitely presented, i.e. SM €  mod(£);
(4.13.2) There exists an AR sequence ending in M.

P R O O F : (4.13.1) => (4.13.2): Suppose that the finite presentation of SM is given by

( , E) -^ ( , M) —• SM —> 0. Letting N be the kernel of p, we have the exact sequence

in Mod(C) as in a similar way to (4.9): 0 -> ( , N) -> ( , £ ) - > ( , M) -> SM -> 0.
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Since SM(R) = 0, we have an exact sequence of CM modules 0—* N —> E —> M —• 0,
which is not split, because SM(M) ^ 0. We will see that this is the AR sequence. To
this end, let / : X —• M be a morphism in £ which is not a split epimorphism. We
want to show the existence of g : X —• E with p • g = f. Note that we may assume X
is indecomposable. If X is not isomorphic to M, then (X, p) is an epimorphism, because
SM(X) = 0. So we will have an element g in (X, E) with (X, p)(g) = / , which clearly
means p • g = / .

Next assume X = M. Since / is not a split epimorphism, / belongs to rad(EndjR(M)),
equivalently, / goes to 0 by the natural map (M, M) —• SM{M). Since there is an exact
sequence (M, E) —» (M, M) —• SM(M) —• 0, this shows the existence of g G (M, E) with

(4.13.2) => (4.13.1): Let 0 - • N -+ £ -> M -+ 0 be an AR sequence. Define a functor
S by the exact sequence 0 - • ( , N) -> ( , £) -+ ( , M) -> 5 - • 0. It suffices to
show that S is equivalent to the simple functor SM- For an indecomposable CM module
M, if X is not isomorphic to M, then S(X) = 0, since any homomorphism / : X —• M
passes through E —* M. If X = M, then the image of (M,E) —• (M, M) is equal to
rad(End#(M)) by (2.9). We thus have S(M) = SM(M). Since the simple functor SM is
completely characterized by these conditions, we consequently have S = SM> I

(4.14) DEFINITION. Denote by Mod(C) the full subcategory of Mod(£) whose objects
are the functors F with the property F(R) = 0. In a similar way, we denote by mod(<£)
the full subcategory of mod((£) consisting of functors F with F(R) = 0.

Let 0-+F—•G—* H —> 0 be an exact sequence in Mod(£). It is immediate from the
definition that if two of the objects F, G and H are in Mod(C)T then they all belong to
Mod((£). The following are also easy to see by (4.7).

(4.14.1) If F and H are in mod(C), then so is G.

(4.14.2) If F and G are in modfO. then so is H.

We give some examples of objects in Mod(C). If M is an R-module, then

Ext J( , M) (n > 1) are clearly objects in Mod(C). It is also clear that the functor
Hom#( , M) defined in (3.7) is an object in Mod(£). We will see that this is actually
an object in mod(<£) if M is in <£.

(4.15) LEMMA. For any CM module M, the functor Hom#( , M) is an object in
mod(Q. That is, Hom f̂ , M) is a finitely presented functor.

PROOF: Consider a free cover of M : F -^ M —• 0. It is sufficient to show that the
cokernel of ( ,g) is the functor Hom#( , M). To see this, it is enough to prove that
the image of ( , q) coincides with $*( , M). (For the definition of <P( , M) see (3.7).)
So the lemma follows from the following fact which is obvious from the definition.
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(4.15.1) For a homomorphism / €  (X, M) with X G € , if / passes through a free module,
then it passes through F. (Prove this as an exercise.) |

(4.16) REMARK. Let F be an object in mod(C). By definition we have an exact
sequence ( , i£) —» ( , M) —• F —* 0. Here note that, for any CM module X and
for any / G $*(X, M), <p(X)(f) = 0 in F(X). For, / is decomposed as X -> y -> M
for some free module y so that F(f) is a composition F(M) —• F(y) —• -F(X) where

= 0, hence F(f) = 0. Since we have the commutative diagram of /^-modules:

<p(M)

(M,M) • F(M)

(fM)[
<p(X)

(XM)

we may conclude that <p(X)(f) = 0 as stated above. Note that this means the sequence
( , M) —• F —* 0 induces an exact sequence Hom^( , M) —> F —> 0. In a same way,
we will have an exact sequence

Combining this with (4.15) we see the following:

(4.17) LEMMA. TAe category mod((t) is an Abelian category. In particular, ift:F—>
G is a morphism in mod((£). <Acn Ker(̂ ) is an object in mod(C).

PROOF: If we know that Ker(<) 6 mod((£)T then it will be easy and a good exercise to
verify the rest of other properties of an Abelian category. (See (4.14.1) and (4.14.2), and
remark that Mod(<£) is an Abelian category.) Here we only prove Ker(tf) G mod(C).

First we show the following as a special case of this.

(4.17.1) Let M and N be in C and let t be a morphism of Hom^( , M) to Hom^( ,N).
Then Ker(<) is finitely presented.

In fact, by Yoneda's lemma, t is of the form Hom^( , / ) for some / G (M, N). Since
Hom^( , X) = 0 for a free module X, after adding a free summand to M, we may
assume that / is an epimorphism of i2-modules. Let L be the kernel of / and consider
the exact sequence 0—> L -1+ M ^ N —»0. Note that L is a CM module. We will show
that the following is exact:

(4.17.2) U
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If this is true, then Ker(<) is finitely generated, and similarly Ker(s) is shown to be finitely
generated. Hence Ker(<) is finitely presented. To see the exactness of (4.17.2), let X G £
and let g G (X, M) such that the image of g in Hom#(X, TV) is 0. Then by definition we
have the following commutative diagram of CM modules:

0 • L —1—+ M —f-^ TV > 0

4 4
a

X • Y

where Y is a free module. Thus there is a homomorphism h :Y —• M such that b = f h.

Since g — ha = ikioT some k G (X, L) and since h • a is 0 in Hom#(X, M), we see that
g is in the image of s(X). This shows that (4.17.2) is exact.

Next consider the general case, and so let t : F —• G be a morphism in mod(C). We
have, by (4.16), the commutative diagram with exact rows:

Hom^f ,TV) —*—> Hom^f , M) —^-> F > 0

•1 4 d 4
Homfl( ,P) - U Homfl( ,Q) - i - G • 0,

where TV, M, P and Q are in (£. Define then a new functor H as follows:

0 —

It follows from (4.17.1) that H is finitely presented. We denote by q the natural projection
from Honiftf , M) 0 Hom#( , P) to Hom^f , M) and denote e = b - q - j . Then it is
clear by chasing the diagram that e actually defines a morphism from H onto Ker(<).
More precisely we have the following exact sequence:

Ker(c)©Hom*( , N) ( - ^ H -U Ker(i) —> 0,

where / is a morphism induced from the natural embedding Ker(c) C Hom#( , P) C

Homftf , M) 0 Honift( , P) and p is a morphism induced from a 0 w. Since Ker(c) ©

Homfl( , TV) is finitely presented by (4.17.1) and (4.15), we see from (4.7.1) that Ker(<)

is also finitely presented, which is what we wanted to prove. |

We are now ready to prove the main result of this chapter.
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(4.18) THEOREM. (Auslander [7]) Let M be a finitely generated R-module (not nec-
essarily in C) and let n be a nonnegative integer. Then the functor Ext^( , M) is in
mod((£), that is, Ext#( , M) is finitely presented.

PROOF: We prove the theorem by induction on t = d — depth(M).
To begin with, consider the case when t = 0. Since M is a CM module by definition,

( , M) is certainly finitely presented. Denote the canonical dual Hom^( , KR) by ( )'
and consider a free cover of M1 to obtain an exact sequence 0 —• N —• F —* M1 —• 0,
where F is a free module and N is a CM module. From its dual sequence 0 —» M —•
F1 —> N' —> 0, we obtain the exact sequence and isomorphisms of functors on C:

0 — ( ,M)—>{ , f ) — > ( ,N')-^ExtR( , M ) — 0 ,

Ext£+1( ,M)~Extn
R{ ,N') ( n > l ) .

(Here note that we used the fact that Ext^( , KR), n > 1, are trivial as functors on (£;
see (1.13).) It follows from the sequence that Ext^( , M) is finitely presented. Since
N' is a CM module, we see from the isomorphism that Ext^+1( , M) is also finitely
presented, by using induction on n.

Next consider the case t > 1. Take a free cover of M to have an exact sequence
0—*•• L —>G—»M—•(), where G is a free module and L is a module of depth(X) =
depth(M) + 1. Note that we may apply the induction hypothesis to L and G. On the
other hand, we have a long exact sequence:

,L)^ExtR( ,G)->Extl
R(

,L)pSExtn
R( ,G)^Extn

R( ,M)

Breaking this into short exact sequences, we have

0 _ > Coker(pn) —• ExtJ( ,M) —. Ker(pn+1) —* 0 (n > 0).

Thus to prove that ExtJ( ,M), n > 0, are finitely presented, it is sufficient to show
that Coker(pn) and Ker(pn) are finitely presented; see (4.7.2). Since ExtJ^( , L) and
Ext^( , G) are both finitely presented by the induction hypothesis, it is immediate from
(4.7.1) that Coker(/?n) is also finitely presented. The problem is to show that Ker(pn),
n > 1, is finitely presented. Since Ext£( , L) and Ext£( , G) are in mod(£) (c.f.
(4.14)), we see from (4.17) that Ker(pn) is also in mod(<£). In particular, Ker(pn) is
finitely presented. This completes the proof. |

In a practical sense the case when n = 1 is of most importance in the theorem.
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(4.19) COROLLARY. The category mod(£) is an Abelian category. Consequently, for
any morphism t : F —• G in mod((£), the kernel oft is finitely presented.

PROOF: If we know that Ker(tf) is in mod(<£), then the other conditions for mod(C) to
be an Abelian category can easily be verified. We only prove here that Ker(tf) is finitely
presented. As in the proof of (4.17) it is enough to show the following:

(4.19.1) If t is a morphism of ( , M) to ( , N) where M and N are in £, then Ker(*)
is finitely presented.

We know from Yoneda's lemma that t can be written as ( , / ) for some / € (M, N).
Letting L be the kernel of / , we have an exact sequence 0 —> ( , L) —> ( , M) -^ ( , N)
in Mod(<£). Note that L is not necessarily a CM module. However we know from (4.18)
that Ker(<) = ( , L) is finitely presented. |

(4.20) COROLLARY. Let N be any finitely generated module over R (not necessarily
in (£j. Then there exists a CM module M and a homomorphism f € (M, N) which satisfy
the following condition:

(4.20.1) Any homomorphism from any CM module L into N is a composition of f with
some homomorphism from L to M.

Such a module M (or a homomorphism / ) satisfying (4.20.1) is called a CM approx-
imation of N.
PROOF: The functor ( , N) on <£ is, by the theorem, finitely presented. In particular,
there is an epimorphism ( , M) —• ( , N) for some CM module M. This exactly means
(4.20.1). |

(4.21) COROLLARY. There are only a finite number of isomorphism classes of in-
decomposable CM modules L from which there is an irreducible morphism into the ring
R.

PROOF: Apply (4.20) to the maximal ideal m to get a CM approximation / : M —* m.
Let h : L —• R be an irreducible morphism from an indecomposable CM module L into
R. Since h is not a split morphism, its image is in m. Thus h must be a composition
L -^ M —> m C R for some g 6 (L, M). It then follows from the definition of irreducible
morphisms that g is a split monomorphism. That is, L is isomorphic to a direct summand
of M. Hence there are only a finite number of such L. |

We close this chapter by noting the following significant result of Auslander.

(4.22) THEOREM. (Auslander [7]) / / R has only a finite number of isomorphism
classes of indecomposable CM modules, then R is an isolated singularity.

PROOF: It will be sufficient, from (3.2), to prove that £(R) admits AR sequences. To
see this, let M be an indecomposable CM module which is not free. We want to show
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that the simple functor SM given by M is finitely presented; cf.(4.13). To do this, let
F be the kernel of the natural epimorphism ( , M) —• 5 M and let {JVi, N2,.. • , Nn}
be a complete list of indecomposable CM modules. Note that each F(Ni) is a finitely
generated R-module since it is a submodule of (7V,-,M). Let {/»i,/»2,-• • ,/i^(«)} be a
set of generators of F(Ni). Putting L = J2i «ATt- and considering each fij as an R-
homomorphism Ni —• M, we define a homomorphism of R-modules <p : L —• M by
(p = ( /n, /12,... , fnfi(n))' Note that X is a CM module and we can consider a sequence
in Mod(£):

{ ^ ) ,M)'—> 5 M — 0.

This is actually an exact sequence. For, substituting any N{ in this sequence, we see that
(Ni,L) —> (N{,M) —> SM(Ni) —• 0 is an exact sequence of i^-modules. We have thus
shown that 5 M is finitely presented. |
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Chapter 5. AR quivers

Our purpose in this chapter is to give the definition of AR quivers and to discuss some
general properties from that. Our main result here is Theorem (5.9) which states that
if R is an isolated singularity, then the AR quiver of R is a locally finite graph. In the
second half of the chapter we will give some computations to draw an AR quiver for the
simplest case.

In this chapter R is a Henselian CM local ring with maximal ideal m and k = R/xn is
assumed to be an algebraically closed field, unless otherwise specified. We always assume
that R has a canonical module. As before, £ denotes the category of CM modules over
R and we write ( , ) instead of Hom#( , ).

(5.1) DEFINITION. For a homomorphism g €  (M, N) with M, N CM modules, con-
sider the following condition:

(5.1.1) Write the decompositions of M and N into indecomposable modules as M =
£,• M{ and N = J2j Nj an<l decompose g along this decomposition as g — (gij) where
gij €  (Mi, Nj). Then no gij is an isomorphism.

We define a descending chain of #-submodules {(M, N)n\n > 1} of (M, N) as follows:

(M, N)n = {/ e (M, N) | there are Xi €  £ (0 < i < n, Xo = M, Xn = N) and

g% €  (Xi-iyXi) which satisfy the condition (5.1.1) above such that

f= 9n ' gn-i 92 ' 9\}-

It is easy to see from the definition that (M,N) D (M,N)\ D (M,N)i 3 . . . 3
(M,N)n D (M, 7V)n+i D . . . is a sequence of i£-submodules and that if M and TV are
indecomposable, then (M, N)i is the set of all nonsplit homomorphisms of M into N. In
particular (M, M)\ — radEnd#(M) if M is indecomposable. Furthermore it is clear that
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/ €  (Af, N) is irreducible if and only if / belongs to (Af, N)\ but not to (M,N)i\ see
(2.10). So it will be meaningful to define:

(5.1.2) Irr(M, N) = (AT, iV)i/(M, N)2

We may say that Irr(M, TV) is the R-module of all irreducible morphisms of M to N.
Actually we see that Irr(M, N) is a vector space over k = R/ra. In fact, if / €  (Af, N)i
and r €  m, then r • / is a composition of / with the multiplication map M —» M by r,
so that r • / €  (M, JV)2. We define irr(M, AT) as the dimension of Irr(M, N) as a &-vector
space.

(5.1.3) irr(M, TV) = dim* Irr(M, N)

Note that irr(Af, N) is always finite, for (Af, N)\ is a finitely generated i^-module.
Now we will define AR quivers.

(5.2) DEFINITION. The AR quiver r of R (more precisely, the AR quiver of € ) is a
graph consisting of vertices, arrows and dotted lines, where vertices are the isomorphism
classes of indecomposable CM modules and we draw n arrows from [Af] to [N] if and only
if irr(M, N) = n > 1. Furthermore if there is an AR sequence 0 —• r(Af) —• E —• M —• 0,
then the vertex [Af] in F is connected by [r(Af)] with a dotted line.

(5.3) REMARK. This definition of AR quivers applies only when k = R/ra is alge-
braically closed. In general cases, the way to draw arrows in F should be changed as
indicated now.

As remarked above Irr(Af, N) is a vector space over k. It is precisely a right ^-module
and a left ^-module, where k\[ = End#(Af)/rad(End#(Af)). Since Af is indecompos-
able, kjtf is a skew field which is an extension of k. Denote by TM,N (resp. IM,N ) the
dimension of Irr(Af, N) as a right fcjv/-(resp. left fc/y-) space. Then arrows in F should be
drawn from [Af] to [N] with a pair of integers, {TM,NJM,N)^ attached if Irr(Af, N) ^ 0.

If k is an algebraically closed field, then there will be no difference between two defini-
tions above, because k = k^ = k^.

(5.4) Example. Let R be a regular local ring of dimension d. Then we know from (1.5.1)
that the free module R is the unique indecomposable CM module over R. It is obvious
that (i2, R) is isomorphic to R and under this isomorphism we easily see that (R, R)\ ~ m
and that (R, R)2 ~ m2. In particular we have Irr(#, R) ~ m/m2 and iii(R, R) = d. Since
there are no AR sequences in this case (for there are no indecomposable CM modules
which are not free), the AR quiver of R consequently looks like:
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where d means that there are d distinct arrows.
Other than the above, there are no examples where we can draw the AR quiver directly

from the definition. It is necessary to inquire more closely into general properties of AR
quivers.

(5.5) LEMMA. Let M and N be indecomposable CM modules over R and assume ihai
there is an AR sequence ending in M:

0 —• r (M) -UE -£+ M —• 0.

Let n be the number of copies of N in direct summands of E. Then the following equality
holds:

irr(7V, M) = n.

PROOF: With the notation in (5.1), we denote S(N,E) = (N,E)/(N,E)i. It is easy
to see that S(N, E) is a vector space over k. We may regard this as a space of split
monomorphisms of N into E, since N is indecomposable. If X is an indecomposable CM
module which is not isomorphic to TV, then clearly S(N,X) = 0. On the other hand,
S(N, N) = EndR(N)/ T3,d(EndR(N)) ~ fc, since k is algebraically closed. It thus follows
that S(Nt E) is a vector space of dimension n. Hence it is enough to see that S(N) E)
is isomorphic to Irr(7V, M) as a &-vector space. For this, define a map <p : S(N,E) —+
Irr(Ar, M) by (p(h) = p - h. We know from (2.9) that <p is a well-defined epimorphism.
We want to prove it is also a monomorphism. Let h be an element of (N, E) such that
p- h G (Nj M)2> Then by definition, there are X €  £ and nonsplit morphisms a : N —> X
and 6 : X —• M with the commutative diagram:

E —V—> M

4

From the property (2.9) of AR sequences, we see that there is a homomorphism c : X —> E
such that b = p - c. In other words, h — c • a has its image in T(M), that is, there is
g : N —• T(M) with h — c • a = q • g. Here we claim that both c • a and q • g are not
split. Actually if q • g were split, then g would be an isomorphism hence q would be split.
If c - a were split, then so would a, both of which are absurd. Thus we have seen that
h = c- a + q - g belongs to (N,E)\, proving that (p is a monomorphism. |

As the dual of this we have the following lemma, which can be proved in the same way
as (5.5) using (2.9)'.
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(5.6) LEMMA. Let M and N be indecomposable CM modules and assume thai there is

an AR sequence starting from N:

0 — > N — > E — > T 1

Let v! be the number of indecomposable CM modules isomorphic to M which appear in
direct summands of E. Then the following equality holds:

irr(iV, M) = ri.

Combining (5.5) with (5.6) we have a very useful result.

(5.7) LEMMA. Let 0^N-+E->M-+0 be an AR sequence and let L be an
indecomposable CM module. Then we have

(5.8) REMARK. Let 0 - • N - • E -+ M - • 0 be an AR sequence and suppose that
E is decomposed as a direct sum of indecomposable modules £* L\ni\ where Li ^ Lj if
i zfi j . Then the AR quiver of R is locally in the following form:

[Li]
ni y* \ n i

[N] ••• [M]

nr \ / nr

[LA
where each rat- indicates there are n; arrows in the same direction. This is indeed a direct
consequence of (5.5), (5.6) and (5.7). In particular, this shows that if there is an AR
sequence ending in M, then there are only a finite number of arrows in the AR quiver
ending in [M]. Analogously if there is an AR sequence starting from JV, then there are
only a finite number of arrows from [N].

From this remark together with previous results we have an important result concerning
AR quivers.

(5.9) THEOREM. Let R be an isolated singularity. Then the AR quiver T of R is a

locally finite graph. That is, each vertex in T has only a finite number of arrows ending

in it or starting from it.

PROOF: Let [M] be any vertex in F where M is an indecomposable CM module. If
M ^ R, then by (3.2) there is an AR sequence ending in M. It thus follows from the
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above remark that there are only a finite number of arrows ending in [M]. Similarly if
M is not isomorphic to the canonical module KR, then there are only finite arrows from
[M]. The problem is to show that the number of arrows into [R] or from [KR] is finite.
By the duality theorem, it is sufficient to consider the vertex [iZ]. But we proved this
result in (4.21). |

(5.10) DEFINITION. Let n(R) be the number of vertices in the AR quiver of R. In
other words, n(R) is the number of isomorphism classes of indecomposable CM modules
over R. We say that R (or <£) is of finite representation type (or representation-
finite) if n(R) is finite.

Note that a CM ring of finite representation type has only an isolated singularity;
(4.22). Thus in many cases when we consider the representation type of R> we will adopt
the assumption that R is an isolated singularity.

In the rest of this chapter we shall try to draw the AR quiver of a certain ring.
Let k be an algebraically closed field and let n be a positive odd integer. Consider the

ring

which is called a simple curve singularity of type (An-\)\ see (8.5). Since n is odd, R
is isomorphic to a subring k{t2,tn} of the power series ring k{t}. In particular, R is an
integral domain. (Note that if n is even, then R is not an integral domain.) We want to
draw the AR quiver of R below. To do this, we start by determining the isomorphism
classes of indecomposable CM modules over R.

First consider a subring T = k{x} of R that is obviously a Noetherian normalization
of R. Let M(̂ = 0) be a CM module over R. Then, by (1.9), we know that M is free as
a T-module. Let // be the maximum integer with the property yM C x^M. We can see
that fi < n. In fact, if// > n, then yM C xnM = y2M, hence M = 0. Take an element a
in M with ya €  x^M — x**+lM, and write ya = x^ft for some ft G M. Note that neither
a nor /? is in xM. Actually, if ft €  xM, then ya would be in x*i+l

1 a contradiction. If
a G xMj then x^ft €  xyM C x^^M, hence 0 €  xM, which is also a contradiction by
the above. Notice also that xn~fiM C yM C x^M. In fact, from yM C x^M, we have
xnM = y2M C yx^M, hence xn~fiM C yM. From the inclusion xn~fiM C x^M, we see
that n — fi > fi, hence the following inequality:

(0 0 < fi < (n - l)/2.

The T-submodule N of M generated by a and /? is actually an iZ-submodule where the



40 Chapter 5

action of y is defined by

(ii) ya = x"P, yfi = - x ^ a .

Secondly we show that AT is a direct summand of M as a T-module. To see this, we shall
prove that a and p are part of a T-free base of M. It is, thus, enough to show that P does
not belong to xM + Ta. Suppose that P = x*y + ia (7 €  M, t €  T). Then we see from (ii)
that -x^^a = yp = xyy + tya = xyy + tx^p. Hence tx^P = -xn-»ot - xyy €  x^M,
since 2/7 €  x^M and n — ft > fi. Since a; is a nonzero divisor on M, we see from this that
tfl G xM. Thus < €  zT, for otherwise /? G a;M. Consequently we have p = ^7+^a €  «M,
which is a contradiction, and so the above claim is proved.

Thirdly we prove that TV is actually a direct summand of M as an ^-module. To prove
this, let {a,P, 71, 72, • • • , 7/} be a T-free base of M. Such a base exists by the previous
argument. Since yM C x^M, we have

(iii)

for some a,-, 6,- and C{j G T. Then, letting 7,- = 7,- — 6ta, we see that {a, /?, 7i, 72, • • • , 7/}
is also a T-free base of M, and that

Therefore, we may assume that 6t- = 0 (1 < t < /) in (iii). Then, we have —xnji = y2ji =

xfi(aiya + Ej Cij{yij)), hence

k=i

Since {a,/?, 71, 72,... ,7/} is a free base over T, looking at the coefficient of p in the
above, we get a,i = 0 for 1 < i < /. Thus we have shown that the T-free submodule N1
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generated by {71, 72, • • • , 7/} is closed under the action of y, hence it is an i2-submodule
of M. Therefore, M = N © N1 as an ^-module.

To sum up, we have shown that any indecomposable CM 72-module is isomorphic to
the R-module generated by a and /? with the inaction defined by (ii). Note that such
a module N is realized as an ideal of R generated by {t/, a;^}, where a = x^ and ft = y.
We thus have proved the following:

(5.11) PROPOSITION. Let R = k{xyy}/(y2 + xn) where k is an algebraically closed
field and n is an odd integer. We denote by 1^ the ideal of R generated by y and x^, where
Jo = R. Then the set { 1^ \ 0 < // < (n — l)/2} is a complete list of nonisomorphic
indecomposable CM R-modules. In particular, the ring R is of finite representation type
andn(R) = (n + l)/2.

Note that in the proposition, when we regard R as &{<2,/n}, each module 1^ is isomor-
phic to a fractional ideal (l,tn-2fi)R.

We next try to compute the AR translation. The set of non-free indecomposable CM
modules is {//J1 < // < (n — l)/2} and the free resolution of such module is given by the
following:

where

( V x** \

From this sequence we easily see that

(iv) tr(/^) ĉ  7 ,̂ syz1 7^ ~ 7̂  and 7* ~
Since R is a Gorenstein ring of dimension 1, the AR translation r is given by r(M) =
(syz1 tr(M))*; see (3.11). Hence we have

(v) rilj-lp ( l < j i < ( n - l ) / 2 ) .

In other words, the AR sequences are of the form:

0 —+ 7̂  —> E —> 7P — 0,

for 1 < /i < (n — l)/2. Since the rank of E is two, it turns out from (5.5) and (5.6)
that in the AR quiver, there are exactly two arrows starting from or ending in each 7^.
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Consequently when l < / i < ( n — l ) /2 , we have

(vi) X in(Ij,Ip)= J2 irr(/M , / i) = 2.
j=o j=o

In the rest of this chapter we identify R with &{<2,<n} and each 7̂  with the fractional

ideal (l,<n-2")i*. Clearly,

where 5 is the normalization k{t} of 7£. Note that for each 0 < i,j < (n — l ) /2 , any R-

homomorphism of I{ into Ij is of the form u- f • v where u (resp. v) is an automorphism
of Ij (resp. /,• ) and / is the multiplication map of te for some nonnegative integer e

satisfying tel{ C Ij. Note also that the set of such multiplication maps forms a semigroup
given by

{te\ e is even with e > max{2(i — j), 0}, or e is odd with e > n — 2j}.

If i zfi j^ then (7t,/j)i = (7,-,/j), since /,- is not isomorphic to Ij. Furthermore, if

j — i > 2, then any homomorphism from /,• into Ij is a composition of two nonsplit

homomorphisms /,• C 7,+i and J,-+i —> Ij by the above remarks. Hence (/,-, 7j)2 = (Ii,Ij)

when j — i > 2. Similarly we see that this is true in the case when i — j > 2. Consequently

we have proved

(vii) irr(/,->/i) = 0 if | t - ; | > 2 .

How about the case of j = i + 1 ? If e > 0, then the multiplication map by te from 7Z

into 7l+i is a composition of the natural inclusion 7; C Ii+i and the multiplication map
by te from 7t_|_i into itself. This implies that the unique candidate for the irreducible
morphism from 7; to 7,-+i is the natural inclusion 7,- C 7l+i up to automorphisms of 7;
and Ij. Hence we have irr(7t-,7t-+i) < 1. Analogously we see that irr(7t-,7i_i) < 1. To
sum up,

(viii) iiiiliJ^Kl if | i - i | = l.

Next consider the case z = j . In this case the semigroup of multiplication by te is given

by

{ie\ e is even with e > 0 or e is odd with e > n — 2i}

= {te\ e = 0,2,4, 6,... , n - 2i - 1, n - 2i, n - 2i + 1, n - 2% + 2, . . . }.
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If n — 2i ^ 1, then it can be easily seen from this description of semigroup that any
multiplication map by te (e > 0) is a composition of nonsplit morphisms, and hence
irr(J;, /,) = 0. On the other hand, if n — 2i = 1, then there is a unique candidate for the
irreducible morphism, namely, multiplication by i. We thus have shown that

(ix) i r r ( / , , / , )< l if i = (n - l)/2,

irr(/,,/,) = 0 if i ^ ( n

Taking (vi) into consideration, we easily see that all the inequalities in (vii) (viii) and
(ix) must be equalities. Therefore we are able to draw the AR quiver of R:

(5.12) The AR quiver of R is:

[R] ^ [h] 5 t [/,] 5* ... ^ [ V ! ,

(5.13) Exercise. For an even integer n, draw the AR quiver of R = k{x,y}/(x2 + yn)
where k is an algebraically closed field with odd characteristic. (See (9.9) for the answer.)
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Chapter 6. The Brauer-Thrall theorem

In this chapter we shall prove one of the fundamental results concerning AR quiv-
ers, (6.2), by which we get a result analogous to the first Brauer-Thrall theorem in the
representation theory of Artinian algebras.

Let k be a perfect valued field and let R be a local analytic fc-algebra with maximal
ideal m, which is assumed to be CM as before. For the definition of analytic algebras see
(1.19). We denote by 9DT the category of all finitely generated J?-modules and by £ the
category of CM modules. Note that all the previous results can be applied to R, since it
is a Henselian ring.

Let F denote the AR quiver for the category (£. Then F has a numerical function on
the set of vertices, called the multiplicity function:

e : {vertices of F} —- N ; [M] .—* e(M)

where e(M) is the multiplicity of M; see (1.6). We always regard the AR quiver as a
graph with such a function.

(6.1) DEFINITION. A subgraph F° of F is called of bounded multiplicity type if
there is an upper bound for the multiplicity function on the vertices in F°. That is, there
is an integer n such that e(M) < n for any vertex [M] in F°.

Note that, if R is an integral domain, then this is the case only when there is a bound
for the ranks of such modules, (1.6.2). Also note that, for a system of parameters x =
{x\,X2,..., xj}, F° is of bounded multiplicity type if and only if there is a bound for
lengths of M/x.M for M belonging to F°. It is obvious that any finite subgraph of F is of
bounded multiplicity type. We say that F° is connected if the underlying non-oriented
graph of F° is connected in the usual sense.

We are now ready to state the main theorem of this chapter.
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(6.2) THEOREM. (Yoshino [66], Dieterich [21]) Let T° be a connected component of
T. Assume that R has only an isolated singularity and that T° is of bounded multiplicity
type. Then T = T° and T is a finite graph. In particular, R is of finite representation

If we apply this theorem to the case when F° is finite, then we obtain the following:

(6.3) COROLLARY. Let R be an isolated singularity. If T has a finite connected
component T°, then T = T° and hence R is of finite representation type.

This shows that if (£ is of finite representation type, then the AR quiver is a connected
graph. We may apply the theorem to the infinite quiver to get:

(6.4)COROLLARY. Let R be an isolated singularity as above. If there is a bound for
multiplicities of indecomposable CM modules over R, then R is of finite representation
type.

The result corresponding to (6.4) for (noncommutative) Artinian algebras is known as
the first Brauer-Thrall conjecture or Roiter-Auslander theorem, cf. Auslander [4], Ringel
[55] and Roiter [56].

Our theorem is not valid unless R is an isolated singularity. We give an example now
which makes Corollary (6.4) fail.

(6.5) Example. (Buchweitz-Greuel-Schreyer [19]) Let R = k{x,y}/{x2), let In be an ideal
of R generated by {x,yn} for any integer n > 0 and set Jo = R and IQQ — XR. Then
{In\ 0 < n < oo} is the complete list of non-isomorphic indecomposable CM modules
over R. In particular <£ is not of finite representation type. On the other hand, e(In) = 2
for any n (0 < n < oo) and e(Joo) = 1.

PROOF: Let T = k{y}. Then R is a finite T-algebra and any CM module is free over
T. Thus giving a CM module M over R is equivalent to giving a T-algebra map JM
from R into a matrix algebra over T and this is also equivalent to giving a square matrix
AM with entries in T and with A2

M = 0 (by taking / M ( Z ) = AM)- It can be seen that
two CM modules M and N are i^-isomorphic if and only if AM = PApjP~l for some
invertible matrix P with entries in T. Thus the classification of all CM modules over R
is the same as the classification of square-zero matrices over T up to equivalence. Since
T is a discrete valuation ring, it is easily seen that any square-zero matrix is equivalent
to a direct sum of matrices of the following forms:

o o ) ' or ( o o ) for some integer n > °*
These matrices correspond to J^, /Q and In respectively. |
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The rest of this chapter is devoted to the proof of Theorem (6.2). We need some
preliminaries.

As before R is a local analytic CM algebra over a perfect field k. Taking a system
of parameters x = {a;i, â 2, . •. , x<i} for .ft, we can form a convergent power series ring
T = fc{zi,£2,... jXj} where d is the dimension of R. Note that R is always module-
finite over T and hence it is T-free, because R is CM.

(6.6) DEFINITION. Let Re = R®TR and call it the enveloping algebra of R over T.
Let fj, : Re —» R be the multiplication mapping. The Noetherian different A/j? of R
over T is defined as follows:

If R is reduced (and CM) then A/^ is known to coincides with the Dedekind different
T>!p which is given by

V$ = {/(trace) €  R \ f €  Hom^HomHfl, T), R)},

where trace denotes the trace map of the total quotient ring Q(R) of R over the quotient
field Q(T) of T. This also equals the inverse ideal of C$ = {x €  Q(R)\ trace(z#) C T}.
For more details see Scheja-Storch [57].

Recall that a system of parameters x is separable if the extension Q(R)/Q(T) is sepa-
rable; see (1.20). If this is the case, then it is known that V^ is an ideal of pure height 1
(purity of branch locus). Thus we have:

(6.7) LEMMA. / / R is a local analytic CM k-algebra which is reduced and if x =
{a?i,2C2,... ,x<i) is a separable system of parameters for R, then M? *s an ideal of pure
height one where T = k{x\,X2i... , £</}.

We also note here that there always exists a separable system of parameters for a
reduced analytic algebra R, since A; is perfect; see (1.20).

The following is one of the most important properties of Noetherian differents.

(6.8) LEMMA. Let R be a T-algebra as above and let M be any Re-module, i.e. an
R-bimodule with T acting centrally. Then M? annihilates the i-th Hochschild cohomology

, M) for i > 0. (For the Hochschild cohomology see Hochschild [39] or Pierce [51].)

Since it is known that Hj,(R, ) = 0 (i > 1) only when R is a separable algebra over
T, as a special case of the lemma, we have:
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(6.9) COROLLARY. The Noetherian different MR defines the ramification locus of
Spec(R) over Spec(T). That is, for a prime ideal 3̂ of R, Ry is ramified over T<pn̂  if
and only if 3̂ contains NR.

From these observations we have the following:

(6.10) LEMMA. Let { ¥ 1 , ^ 2 , . . ,9*n} be a set of prime ideals of R with the property
that each ifyj. (i = 1, 2 , . . . , n) is a regular local ring of the same dimension t. Then there
is a system of parameters {a?i, a?2, • •. , xj} for R such that NRXi X2 1 is not contained
in any Vfii (i = 1,2,... ,n) .

PROOF: Let S denote the set R — U,̂ Pt- which is multiplicatively closed in R. Note that

S~XR is a semi-local ring with maximal ideals ?pi(S~lR) (1 < iI < n). Since #<p. =

(S~lR)^s-1R) 1S a regular local ring of dimension t, one can choose a set of elements

{x\j X2J . . . , xt} in R which forms a regular system of parameters for each /ftp. (1 < 11 < n).

Thus (x\iX2,... , a?t)#<p. = WiR^ for any i. Since R/yJ(x\,X2,... ,xt)R is a reduced

analytic algebra over k and since k is perfect, we can take {a?t+i,a;j+2> • • • > xd} from R

which forms a separable system of parameters for R/y(xi,X2)... ,xt)R\ (1.20). Then,

since {a?i, #2,.. • , x^} is a system of parameters for R, we can consider the power series

ring T = k{x\, #2, . . . , x^} on which R is module-finite. Note that, for any 1; (1 < iI < n),

?Pi fl T = (a;i,a;2,... , £*)T which we denote by p. Then it is easy to see that each

R<Pi (1 < * < n) is unramified over Tp, for R^pJpR^ = (R/y(xi,X2,... jX^R)^ is
separable over Tp/pTp. We thus conclude from (6.9) that ^3,- does not contain A/j?. I

Now we define an ideal of R which seems to be a good invariant of an analytic algebra

R.

(6.11) DEFINITION.

where {x\, X2,... , x^} ranges through all systems of parameters for R.

As a corollary of (6.10) we see that AfR has the following property.

(6.12) LEMMA. The ideal MR defines the singular locus of Spec(R), thai is, for a
prime ideal 3̂ of R, R<# is regular if and only i/^3 does not contain AfR.

PROOF: If ^3 does not contain A/^, then it does not contain A/j? for some T =
k{x\,X2,... ,£<*}• Thus Ry is unramified over T<pnr by (6.9), which implies that Ry

is regular. On the other hand, assume that ifyj is regular. Then by (6.10) ^3 does not
contain MR for some T = k{x\, £2, . . . , £<*}> m particular, it does not contain MR. I

(6.13) REMARK. If R = T[z]/(/(z)), then it is known that MR is an ideal generated by

the derivative f'(x). Thus in the case when R is a hypersurface k{x\, £2, • • • , xd+i}/(f)>
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MR is generated by derivatives df/dxi ( l < i < d + l) . By this fact we are able to see
that the assumption that A; is a perfect field is indispensable in (6.12). For example, if
there is an element a in A; which is not in kp, where p is the characteristic of k, then
consider a fc-algebra R = k{x, y}/(xp + ayp). In this example, R is an integral domain of
dimension 1, hence an isolated singularity, though AfR = 0.

(6.14) LEMMA. If R has only an isolated singularity, then one can choose a system of

parameters x = {0:1,0:2, • • • ,£<*} for R which satisfies the condition:

(6.14.1) for any i (1 < i < d) there is a regular subring T,- of R on which R is finite and

X{ belongs to the Noetherian different NR.

We call such an x an efficient system of parameters for R.

PROOF: By induction on ,; (1 < j < d), one can choose a part {a?i, a?2,... , XJ} of the

system of parameters for #, such that Xi belongs to AfR. for some T, (1 < i < ; ) . This

is obvious if.; = 1, since Aj? is an ideal of pure height 1 for any regular subring T of R.

For 2 < j < d, assume that { s i , ^ • • • ,xj-i} a r e already chosen. Then by (6.10) there

is some Tj with the property that MR. is not contained in any minimal prime ideals of

(x\, X2, - • • , XJ-I)R. Thus there is an element Xj in MR. such that {a?i, Z2> • • • > Xj} forms

a subsystem of parameters for R. |

Efficient systems of parameters will play a central role in the rest of this chapter.

The following proposition will be a key for using these parameters. In fact, it leads

Propositions (6.16) to (6.18), which, we should mention, are generalizations of Marranda's

theorem about finite group rings over complete discrete valuation rings.

(6.15) PROPOSITION. Letx = {x\,xiy... , xj} be an efficient system of parameters
for R and lei M, N be CM modules over R. We denote by x(n) the ideal of R generated
by {xi, x™,... , z j } . Then for any R-homomorphism <p from M/x.^M to N/x.^N, there
exists an R-homomorphism rjj from M to N such that (p 0 R/~x.R = xj) 0 R/x.R.

PROOF: By induction on d — i (0 < i < d) we prove the following:

(6.15.2*) There is an i£-homomorphism y?,- from M/(x\1... ,zf)M to N/(x\,... ,x\)N
such that (fi (8) R/~x.R = <p ® R/x.R.

There is nothing to prove for i = rf, for (pj = <p is given. Assume that <pi+\ is already con-
structed (0 < i < d- 1). It is enough to show the existence of <pi from M/(x\,... , x})M

to N/(xl... , x2i)N satisfying p,- 0 R/(x\%... , xlxi+l)R = <pi+l 0 R/(x\,... , *?, xi+1).
For simplicity we denote the ideal generated by {ajf,... , x}} (resp. {x\,... , x}y £,+1} )
by y% (resp. z, ). Since TV is a CM module over R, we have the commutative diagram
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with exact rows:

0 > N/yiN -^-> N/yiN • N/yi+lN > 0

* 1 1 II I
1+1 i II i

0 • N/yiN "fl> N/yiN • N/ziN • 0.
Applying the functor Homj'.+1(M, ) to this diagram where 7}+i being as in (6.14.1), we
obtain the following commutative diagram:

0 -» ttomTi+1(M,N/yiN) -* HomTi+1(M,N/yiN) -f HomTi+1(M, JV/y.JV) -> 0

W , II 1
0 -> UomTw(M,N/yiN) -> KomTi+1(M,N/yiN) -> EomTi+1(M,N/ziN) -» 0,

where the rows are exact, since Af is a free TJ+i-module. Note that these rows are also
exact sequences of i£-bimodules. (The left (resp. right) action of J? on Hom(M, TV')
is given by the one induced from the action on N' (resp. M ).) Noting that
#£.+i(i*,HomT.+1(M, N1)) = EomR(M,Nf) for any ii-modules M and JV', we now get
the commutative diagram with exact rows by taking the Hochschild cohomology functor:

EomR(M,N/yiN) - EomR(M, N/yi+1N) -H. H±.+1(R, KomTi+1(M,N/yiN))

II i W»
Homfl(M,JV/y,iV) - KomR(M,N/ziN) -> H^+l(

By (6.8) and by our choice of z,+i and 7}+i in (6.14.1) we know that Xi+\ on the right
vertical arrow induces the trivial map. Therefore some easy diagram chasing shows that
for any <p,+i in Hom^(M, N/yi+\N), there is <pi in Hom^(M, N/yiN) with <pi®R/ziR =
(fi+i 0 R/ziR. This completes the proof of the proposition. |

As a direct consequence of (6.15) we obtain the following:

(6.16) PROPOSITION. Lei x = {xi,x2i... , a;rf} be an efficient system of parameters
for R and let M be a CM module over R. Then M is an indecomposable R-module if and
only if M/x^M is indecomposable.

PROOF: If M is decomposable, then it is obviously true that M/yP^M is also de-
composable. Conversely assume that M is indecomposable. Take an idempotent e in
End#(M/x(2)M). We want to prove that either e = 1 or 0. We have a commutative
diagram of natural ring homomorphisms:

EndR(M)

a=0R/xR \
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Now we denote by A the image of a which is also local, for it is a homomorphic image
of the local algebra End#(M). It then follows from (6.15) that /?(e) belongs to A. Since
e2 = e, 0(e) is also an idempotent of A, hence either ft(e) = 1 or 0. If f3(e) = 0, then
e(M/x^M) C x(M/x^M) hence e = 0, because e2 = e. If /3(e) = 1, then 0(1 - e) = 0
hence by the above e = 1. |

We also obtain from (6.15) the following:

(6.17) PROPOSITION. Let x = {xi,x2,... ,xd} be an efficient system of parameters
and let s : 0 —* N -^ E -^ M —• 0 be an exact sequence in the category <£. Denote by s
the sequence obtained from s by tensoring R/x^R :

s : 0 —> tf/x<2>JV -U E/x^E -*•> M/x^M —> 0

fMrte <Aa< s 15 a/50 ezaci, 51'ncc x̂ 2^ w a regular sequence on M.) Ifs is split, then so is
s.

PROOF: Assume s is split, that is, there is an / in HOIIIR(M/X(2)M, E/X^E) such that
p - f is the identity on M/x^M. Then (6.15) shows that there is a g in KomR(M, E)
such that g 0 fl/xfl = / <g> R/xR. Thus (p • g) ® # / x # = (p 0 i^/xii) • (̂  0 R/xR) is
the identity mapping on M/xM. In particular we see by Nakayama's lemma that p • g
is an epimorphism, and so it must be an automorphism on M. This shows s is a split
sequence. |

The next proposition will be useful later.

(6.18) PROPOSITION. Let x = {xux2i... ,Zrf} 6e an efficient system of parameters
and let M, N be indecomposable CM modules over R. If M/x^M is isomorphic to
N/x^N, then M is isomorphic to N.

PROOF: Let / be an isomorphism from M/x^M onto N/x^N. Then by (6.15) we
have a homomorphism / from M to N such that / 0 R/xR = / 0 R/xR. In particular /
is epimorphic by Nakayama's lemma. Thus we obtain an exact sequence 0 —• Ker(/) —•
M —• N —*• 0, where it is easily seen that Ker(/) is also a CM module. Tensoring R/xR

with this sequence we have an exact sequence:

0 —> Ker(/) ®R/xR —> M 0 R/xR f ^ R N 0 R/xR —> 0.

Since / 0 R/xR is an isomorphism, we see that Ker(/) 0 R/xR = 0, hence Ker(/) = 0
again by Nakayama's lemma. Thus / gives an isomorphism between M and N. |
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(6.19) REMARK. The above proof also gives the following:
If / is an .R-homomorphism between CM modules M and iV, and if / 0 R/xS2'R gives

an isomorphism, then / is also an isomorphism.

For the proof of Theorem (6.2) we need the following lemma.

(6.20) LEMMA. (Harada-Sai lemma for CM modules) Lei Mi (0 < i < 2n) be in-

decomposable CM modules over R and lei x = {a5i, a?2j • • • ixd) be an efficieni sysiem
of parameiers. Lei / , : M,_i —• Mi (1 < i < 2n) be non-isomorphic homomorphisms.
Assume ihai length(Mi/x.^Mi) < n for 0 < i < 2n. Then we have

PROOF: We denote M/x^M, f®R/x.WR respectively by M, / . Then by (6.16) and
(6.19), the i2-modules Mj and ^-homomorphisms /,• satisfy the following conditions:
(a) Mi (0 < i < 2n) are indecomposable,

(b) lengih(Mi) < n for all i, and

(c) /,• (1 < i < 2n) are all non-isomorphic.

Then Harada-Sai lemma ([51, Proposition 7.2] or [34]) shows that the composition

h* -h' /l is trivial. |

In the case when we are given a sequence of irreducible morphisms:

with all Mi indecomposable CM modules, then we will call this a chain of irreducible
morphisms of length n. A chain (*) of irreducible morphisms is said to be nontriv-

ial with respect to a system of parameters x = {xi,aJ2, ,*d} provided that

(fn • fn-i' * */i) ® R/x.R is a nontrivial homomorphism. The following is the result cor-

responding to [55, Lemma 2.1].

(6.21) LEMMA. Lei R be an isolaied singulariiy and lei x = {a?i,a!2,... ,%d} be an
efficieni sysiem of parameiers for R. Lei M} N be indecomposable CM modules over R.
Assume ihai ihere is a morphism h from M inio N saiisfying h <g> R/~x>2'R ^ 0, and
ihai ihere exisis no chain of irreducible morphisms from M io N of lengih < n which is
nonirivial wiih respeci io x(2). Then
(a) ihere exisis a chain of irreducible morphisms:

M ^ O A M ^ I , - > Mn-i - ^ Mn

and a morphism g : Mn —* N with (g • /„ • /n_i • • • f\) ® R/x^R ^ 0; and



52 Chapter 6

(b) there exists a chain of irreducible morphisms:

and a morphism f : M —• Nn with (g\ • g2 • • • gn * / ) 0 R/x\2'R ^ 0.

PROOF: We only prove (b), for (a) can be obtained by a dual argument. The proof
proceeds by induction on n. For n = 0, there is nothing to prove. Assume n > 0. Then
by the induction hypothesis we have irreducible morphisms gi : Ni —• iVt-__i (1 < i < n—1)
with No = N and a morphism f : M —+ Nn-\ such that (g\ g2 • • • gn-\ •/) (&R/'x.^R ^ 0.
Our assumption implies that / can never be an isomorphism. We consider two cases:
First let 7Vn_i be isomorphic to R. In this case by (4.20) we have a CM module L and a
morphism h from L to Nn-\ such that / can be factored through h:

M M Nn^ = R

L

We decompose L into a direct sum of indecomposable CM modules Li, and also decompose
h into a direct sum of hi, and h' into a sum of h\. Therefore / = Y,hi • h[. Note that,
if we take ( , L) —• ( , m) to be minimal, then the hi are irreducible. Now, since
(gi'92-"9n-i • f) 0 R/XWR + 0, it follows that (gi>g2--gn-i - hi • fcj) <g> R/TLWR ^ 0
for some i. Letting Nn = Li and gn = hi, the lemma follows in this case.

In the second case assume that Nn-\ is not isomorphic to R. Thus there exists an
AR sequence 0 -> r(JV~n_i) -+ L A 7Vn_i - • 0; see (3.2). Let L = £ i Li with Xt-
indecomposable, and let h = (&»•). Again the hi are irreducible. By the property of AR
sequences one can lift / to L, thus / will be factored again in the form / = £ hi - h^. In
the same way as above, one obtains (</i • • • gn-i - hi • h^) 0 R/n^R ^ 0 for some i, and
the proof is completed. |

Now we proceed to the proof of Theorem (6.2). Let R be an isolated singularity as
in the theorem and let F° be a connected component of the AR quiver F. Assume that
all indecomposable CM modules in F° are of multiplicity < a. Let x = {x\, x2,... , xj}
be an efficient system of parameters for R. Note that for a module in F° we have
length(M/x(2)M) < m where m = a - bd with 6 being the least integer satisfying tn6 C
xWR; (1.7).

Let M, N be two indecomposable CM modules with the property that there is a
morphism / from M to N such that / 0 R/x.^R ^ 0. Assume that M belongs to F°.
We want to prove that there is a chain of irreducible morphisms from M to N of length
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< 2m which is nontrivial with respect to x'2), and thus that N is also in F°. For otherwise,
by (6.21) there is a chain of irreducible morphisms:

M = Mo - ^ Mi - ^ Mi —> > Mn_i ^ Mn

and a morphism g : Mn -+ N with (# • /„ • • • /2 • / i) ® R/x.^R ^ 0, where n = 2 m. Here
we note that M,- are all in F°, for Mi being connected with M in F. In particular, we have
length(M/x^M) < m by the assumption. Then (6.20) shows that (fn • / n_i • • • / i) <g>
R/x^R = 0, which is a contradiction.

Summarizing the above, we have obtained the following:

(6.22.1) Let M and N be indecomposable CM modules with the property that there is
a homomorphism / from M to N satisfying / <g> R/x.^R ^ 0 . If M belongs to F°, then
there is a chain of irreducible morphisms from M to N of length < n(= 2m). In particular
TV also belongs to F°.

The dual argument gives the dual statement of the above:

(6.22.2) Let M and N be as in (6.22.1). If N belongs to F°, then there is a chain of
irreducible morphisms from M to TV of length < n. In particular M also belongs to F°.

Now let M be any indecomposable CM module over R. Then there is a map / : R —• M
with f®R/x.(2)R ^ 0. (It is enough to take an element x in M which is not in x(2)M and
to define f(r) = rx.) Taking M from the vertices in F°, one can show by (6.22.2) that
R belongs to F°. It then follows from (6.22.1) that any M from F belongs to F°. Thus we
have proved that F = F°, and at the same time, that any vertex in F is connected with
R by a directed path of length at most n. On the other hand we know from (5.9) that
the graph F is locally finite. Hence F must be a finite graph and the proof is finished. |
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Chapter 7. Matrix factorizations

In this chapter we shall make a brief presentation of Eisenbud's matrix factorization
theorem, (7.4). This will play a key role when we treat CM modules over a hypersurface
singularity.

Suppose that a ring R is a homomorphic image of a regular local ring £, that is, R = S/I
for some ideal / of S. When / can be chosen as a principal ideal (/), we call R a local
ring of hypersurface (or simply a hypersurface) defined by / in S. Throughout this
chapter R is always a hypersurface and is always given by R = S/(f), which is assumed
to be Henselian. Notice that R is a CM ring. We are concerned with the category £(R)
of CM modules over R. For this we only consider the case when / ^ 0, for otherwise, R
will be a regular local ring on which all CM modules are free.

Let us begin by analyzing free resolutions of CM modules. For any CM module M
over R, regarding it as an ^-module, we have, by the Auslander-Buchsbaum formula, the
following equality:

proj.dim5(M) = depth(S) - depth5(M) = 1.

Equivalently M has the following free resolution as an ^-module:

(7.1.1) 0 —* 5 ( n ) -£+ S{n) —* M —-+ 0.

(The middle and the left term have the same rank n, because M has rank 0 as an 5-
module.) Since M is an R-module, it follows that f M = 0. In particular, we see from
(7.1.1) that /£(n) C <p(5(n)), thus for any x in £(n) there is a unique element y €  S^
with f - x = <p(y). Putting y = ^(x), clearly \j) is a linear mapping from S^ into itself
and satisfies

(7.1.2) V>.y = /-15(»).
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Multiplying by <p from the right on both sides of (7.1.2), we have, since <p is a monomor-
phism,

(7.1.3) 1>-<P = f'lsw-

We regard y>, if) as square matrices on S by fixing a base of S^n\

(7.1) DEFINITION. A pair of square matrices (y?, \j)) with entries in S satisfying the

conditions (7.1.2) and (7.1.3) is called a matrix factorization of / . A morphism
between matrix factorizations (<p\)fa) and (y?2> fa) is a pair of matrices (a, p) with a-<pi =

(f2 ' P and p - ifti = fa ' #•

(7.1.4)

In this case, we write (a,/?) : (^l)V'i) ~* (^2^2). Note that the commutativity of
the right square in (7.1.4) implies the commutativity of the left. In fact, multiplying
a • <Pi = 92 • /? by V>i, y>2, we will have / ^ 2 - a = fa ' <* - <Pi' j>i = 1>2 ' <P2 ' P ' 1>i = fP ' 1>u
hence fa - a — P - fa. For practical use, the equality a • <p\ = <p2 - P is enough for (a, P)
to be a morphism. We denote by MF s(f) the category of matrix factorizations of / and
morphisms between them. It is trivial that MFs{f) is an additive category, by defining
the direct sum as follows:

Naturally two matrix factorizations (y>i, V>i) and (<p2, fa) are called equivalent if a, P are
isomorphisms in (7.1.4). We often identify equivalent matrix factorizations. A matrix
factorization (<p, I/J) of / is called reduced if the entries of <p, \f) are nonunits. This
is equivalent to saying that any matrix factorization equivalent to (y>, i(>) have nonunit
entries. Note that (1, / ) and (/, 1) are matrix factorizations of / which are not reduced.

WARNING. DO not confuse (y?, rji) with (V>, y?). In general, they are not equivalent to each

other; see (7.7).

If (<p,il>) €  MF5(/), then <p and ty must each be a monomorphism as a mapping on
S(n\ In fact, if <p(x) = 0, then fx = ip(<p(x)) = 0 hence x — 0 , because / is a nonzero
divisor on S^n\
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Let (y?, VO be a matrix factorization of / . Denoting by ^, V> the matrices <p, %j) modulo
(/), we have a chain complex of ^-modules:

This is actually a chain complex by (7.1.2) and (7.1.3). In fact,

(7.2.2) the complex (7.2.1) is exact.

Indeed, if J €  # ( n ) (z €  S(n)) satisfies Jp(j) = 0, then <p(z) €  / S ( n ) = y> • V>(S(n)), hence
z €  ip(S(n')j for y> is a monomorphism. It thus follows that J €  Im(y>).

Thus one can obtain the jR-free resolution of M by (7.1.1) together with (7.2.2):

(7.2.3) > # ( n ) -£* # ( n ) -^+ i?(n) -^+ i?(n) -̂ -> il (n ) - ^ i?(n) —• M —• 0.

One observes here a curious phenomenon on the iMree resolutions of CM modules, which
can be stated as follows:

(7.2) PROPOSITION. A CM module over a hypersurface has a periodic free resolution
with periodicity 2.

We showed that if we are given a nontrivial CM module over a hypersurface R = S/(f),
then we have a matrix factorization (<p,tl>) of / and an R-free resolution as in (7.2.3).
Conversely a, matrix factorization ((p,i/>) will give a short exact sequence of S-modules
as in (7.1.1) with M a CM module over R. In fact, because fS^ C <p(S^)j we have
fM = 0, hence M is an .ft-module and M is equal to Coker(<p) which has an R-free
resolution (7.2.3). By the periodicity of (7.2.3) M is the 2i-th syzygy of M itself for any
i, thus it must be a CM module by (1.16). We write Coker(<p, \j)) for M. Likewise, if
(a,/?) : (y?i,^i) —• (^2,^2) is a morphism in MFs(f), then it induces a chain map:

Xpi (01 fPi (01

?l 4 ?1 4
• Coker(y?2j V2) • 0

Hence there is a homomorphism of CM modules Coker(y?i, ̂ 1) —> Coker(y?2) ̂ 2) which we
will denote by Coker(a, /?). Thus we have defined an additive functor Coker : MFs(f) —*
£(R). Clearly Coker(l,/) = 0 and Coker(/, 1) = R.

Before stating our result, we need some more preparation.
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(7.3) DEFINITION. Let 21 be a category whose Hom-sets are Abelian groups, and let
V[$ be a set of objects in 21. In general, we define 21/^3 to be the category whose objects
are the same as 2t, and morphisms from A to B in 21/̂ 3 are the elements of

where ^3(A, B) is a subgroup generated by all morphisms from A to B which pass through
direct sums of objects in ^3. Notice that any objects in ty are the zero object in 21/^3
and that 21/^3 is the largest quotient of 21 with this property.

Using this notation, we define the categories:

(7.3.1) MEs(/) =

(7.3.2) RMEs(/) = MF s( /) /{(l , / ) , (/, 1)},

(7.3.3)

Note that €(# ) is the category having Hom^(^4T B) as the set of morphisms from A to
B, cf. (3.7).

We can now state the theorem.

(7.4) THEOREM. (Eisenbud's matrix factorization theorem [25]) If R = S/(f) is a
hypersurface, then Coker induces an equivalence of the categories:

=. €(R).

Moreover this induces an equivalence:

BMEs(f) *

PROOF: Since Coker(l,/) = 0, Coker certainly induces the functor MF5(/) - • £(#),
which we also denote by Coker. Define the functor T : £(R) —• MEs(f) as follows: For
a nontrivial CM module M we may have a free resolution of M as in (7.1.1), and then
obtain matrices (y>,^) as in (7.1.2) and (7.1.3). We set T(M) = (y>,^). Note that this is
determined uniquely as an object in MEs(f)- In foct, if w e choose (p so that the resolution
(7.1.1) is minimal and if (y?i, V'l) is another matrix factorization obtained from M, then
there are invertible matrices a and f$ such that the following diagram is commutative:

M > 0
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Hence (a,/?) is a morphism from ((jj J) > (o /°i)) t o (^IJ V>i) which gives an equivalence.
Since we may neglect (1,/) in MF5(/)? T(M) €  MF5(/) is uniquely determined.

Next we consider morphisms. Given a morphism g : M\ —• M2 in £(R), there is a
commutative diagram:

(7A1) , J ttJ ,J
0 • 5 ( f l 2 ) — ^ - > 5 ( n 2 ) • M 2 • 0 .

Hence (a,/?) gives a morphism T(Mi) —• T(M2) which we denote by T(#). If (a',/?')
is another pair of matrices which makes (7.4.1) commutative, then there is // : S(ni) —•
S(n2) such that a — a1 = y?2 • /i and /? — /?' = // • y?i, therefore the morphism (a, /?) —
(<*',/?') is a composition of (/x,/i • y?i) : (<pi,i>i) - • ( l n 2 ) / • ln2) with (y?2,l) : ( l n 2 , / •
ln2) —»• (^2)^2)- Hence (ex, ft) = (a1, ft1) as a morphism in M£5(/). Consequently T(#)
is uniquely determined. We thus have defined the functor T : £(R) —* MFs(/). Then by
the definitions of Coker and T it is fairly easy to see that T • Coker = 1 and Coker -T = 1.
We therefore obtain an equivalence MEs(/) — £{R)- The second equivalence in the
theorem is obvious from the first, since Coker(/, 1) = R. |

(7.5) REMARK. Let (y?,^) be an object in MF5(/). Notice first that

(7.5.1) if (y?, VO is a reduced matrix factorization, then Coker(y?, tp) has no free summand.

In fact if M has a summand i2, then in (7.1.1) <p may be taken as (p' ® / for some y?',
hence (y?, if)) is equivalent to (y?', ip1) ® (/, 1) for some  ip1, which is a contradiction.

If the matrix <p has a unit entry, then it is easy to see that ((p,i>) has (1,/) as a
summand. Likewise, if rp contains a unit, then (<p, rp) has (/, 1) as a summand. As a
result, an arbitrary matrix factorization (y?, ip) can be written as

(7.5.2) fo V) = (fo, V-o) 8 (/, l) (p ) © (1,

with (y?o, i>o) reduced and with p, q nonnegative integers. We claim that this decomposi-
tion is unique up to equivalence. To show this, let (y?, V>) = (<?o, V>o) ® (/̂  1 ) ^ ® (1> f)^
be another one. Putting M = Coker(^>, ̂ ) , Mo = Coker(y?o5 V'o) a n d MQ = Coker(y?0) V'o)'
we see from (7.4) that M ~M0<$> R^ ~ M^ 0 itfA Since, by (7.5.1), Mo and M^ have
no free summands, we have p = p1 and Mo ^ MQ by the uniqueness of direct decom-
positions in £(R). From Mo ^ MQ, one sees that (y^Oĵ o) is equivalent to (y^V'o); s e e

the construction of T in the proof of (7.4). Finally, comparing the sizes of matrices, one
obtains q = q1 and the uniqueness of (7.5.2) follows.
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By this remark we see that under the equivalence in (7.4), the reduced matrix factor-
izations correspond precisely to CM modules with no free summand. Thus we have:

(7.6) COROLLARY. The functor Coker yields a bijective correspondence between the
set of equivalence classes of reduced matrix factorizations of f and the set of isomorphism
classes of CM modules over R which have no free summands.

Obviously an indecomposable matrix factorization corresponds to an indecomposable
CM module.

(7.7) PROPOSITION. Let M be an indecomposable nonfree CM module over R =
S/(f) given by M — Coker(<p,^) with (<p, VO a reduced matrix factorization of f. Then
syzJjM is also indecomposable and nonfree, and syz^M ~ Coker(V>, <p).

P R O O F : Recall, (1.15), that syz^M denotes the reduced first syzygy of M. It is obvious
that (Vs^O is also in MFs(f)- Furthermore it is indecomposable, for otherwise, (i>,<p)
would be equivalent to a nontrivial sum (V>ij<Pi) ® (-02, ̂ 2), and then (y>, i/>) would be
equivalent to (<pi, V>i) 0 (<P2> V>2)j a contradiction. Note that (V>, <p) is reduced and hence
Coker(V>, <p) is nonfree. From the exact sequence (7.2.1) and from the definition of Coker
it follows that there is an exact sequence:

0 — • Coker(V>, <p) —> R{n) —> Coker(<p, V>) —> 0.

Since Coker(V>, <p) is indecomposable nonfree, we have syz^ M ~ Coker(V>, <p) as desired. |

(7.8) REMARK. Let M be the same as in (7.7) and let N be another CM module
over R given by N = Coker(y?', V>') for a matrix factorization ((p1,^1). If h : N —•
syzJ^M is an i2-homomorphism, then by (7.4) there is a morphism (a,/?) : ((p',rpl) —•
(i/>,<p) in MF5(/) such that Coker(a,^) = h. By the definition of morphisms, it is

easy to see that (I ; I , I , 1) is also a matrix factorization of / . Letting
\{J <p ) \0 1> J

L = Coker( I , J , I t I), we have an exact sequence:

0 —> M —> L —>N —>0,

whose class in Ext^(AT, M) is the image of h under the natural mapping p :
Hom^(AT,syz}lM) —• Ext^(JV, M). Since p is surjective, any extension of M by N is
obtained in this way.
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Chapter 8. Simple singularities

In this chapter we shall define simple singularities in the sense of commutative algebra
and show that any Gorenstein ring of finite representation type has a simple singularity;
see Theorem (8.10) and Corollary (8.16). The converse is also true. However we postpone
its proof to the next chapter, for it requires a more complicated argument. Almost all
arguments below are taken from the papers Buchweitz-Greuel-Schreyer [19] and Herzog
[35].

Throughout this chapter (R, m, k) is a Henselian CM local ring. We always assume
that R is a hypersurface defined by / in a regular local ring S:

R = S/(f)

The maximal ideal of S is always denoted by n.

(8.1) DEFINITION. For a hypersurface R = S/(f) consider the following set of ideals
in S:

c(f) = { / | / is a proper ideal of S with / €  I2}.

Call R a local ring of simple singularity (or a simple hypersurface singularity)
if the set c(f) is finite.

We first show how this definition regulates the form of / .

(8.2) LEMMA. Let R = S/(f) be a local ring of simple singularity and assume that k
is algebraically closed. Then the following hold:
(8.2.1) Ifdim(R) = 1, then e(R) < 3.
(8.2.2) Ifdim(R) > 2, then e(R) < 2,
where e(R) denotes the multiplicity of R, that is, e(R) is the maximal integer e with
fene.
PROOF: Let TT : n —• n/n2 be the natural projection and let {xo, a?i,... , xj} be a set of
elements in n with {TT(£O), 7T(£I), . . . , ft(xd)} a &-base of n/n2, where d =
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First suppose e(R) > 4. Then letting J\ = TT~1(A) for any subspace A of n/n2, we
deduce that J\ ̂  J\i when A ̂  A' and that / G J2 for any A, since / G n4. If d > 1, then
there are infinitely many subspaces in n/n2, hence R is not a simple singularity. This
proves (8.2.1).

Next suppose e(R) > 3 and d > 2. Then / can be written as an infinite sum:

/ = E /••>
«>3

where each /,• is a homogeneous polynomial of degree i in {xoj^i? •••> £<*}• Let V be a
hypersurface in P^ defined by the equation fe = 0. Note that V has dimension at least
1, since d > 2. Hence it is an infinite set. For any point A = (ao : ai : . . . : a^) in V,

we define an ideal I\ as {a,-£j — ajX{\ 0 < i,j < d}S + n2. It is obvious that J\ ̂  7y
if A ̂  A', because the homogeneous equations in I\/v? exactly define the point A in P^.
Thus the lemma will follow if we prove / G l\ (A G V). To see this we may assume
A = (1 : 0 : . . . : 0) after a change of basis. Then I\ = (a;2), *i, • • • , Xd)S> s o w e n a v e

/ 2 = {xiXjj XQX{,XQ\ 1 < i,.; < d}S. It hence follows that fa = aa?o (mod/2) with
a G A;. Since A is a point in V, we see that a = /3(1, 0, . . . , 0) = 0, which shows fa G / 2 .
Therefore / G l\ 4- n4 = / 2 . |

(8.3) LEMMA. Zc< i? = S/(f) be a simple singularity of positive dimension. Then R
is reduced.

PROOF: Suppose R contains a nilpotent element. Then we have a decomposition / = g-h2

for some g,h G S. It is then obvious that / G I2 for any ideal / of S containing h. Since

S/(h) has dimension at least one, there are infinitely many such 7. This shows the

lemma. |

(8.4) LEMMA. Let R = S/(f) be a simple singularity of dimension 1. Assume that S
contains an infinite field F. Then for any two elements x, y in n we have:

(8.4.1) fi(x\x>y\xy\y«).

PROOF: Assume the contrary. Then / G (s3, x2y2,xyA,y6) for some x,y G n. Consider-
ing the set of ideals in S:

h = (x + Xy2,y3) (A €F) ,

we can- show that I\ ^ 7^ if A ̂  A'. In fact, if 7 = 7\ = 7^ for some A ̂  A', then

(A — \')y2 G 7, hence 7 contains y2 and x. Thus 7 = (x, y2). Considering the image of

(x, y2) (resp. (x + Ay2, y3)) in S/(x + \y2)S, it is generated by y2 (resp. y3). Therefore

y2 — ay3 = y2(l - ay) € (x + Xy2)S for some a e S, thus y2 G (a + Ay2)5 and hence
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x e (x + Xy2)S. Then by the assumption, / G (x3
yx

2y2, xyA,y6) = 73 C (x + Ay2)3S,
contradicting (8.3). We have thus shown that there are infinitely many I\. If we see that
/ €  /j[, then the proof will be finished. This is, however, trivial, since (y6, xyA, x2y2,x3) C

(8.5) PROPOSITION. Let S = k{x,y} where k is an algebraically closed field of char-
acteristic 0. If R = S/(f) is a simple singularity, then after a change of variables f is
equal to one of the following polynomials:

(An) *2 + yn+1 (n>l),

(Dn) x'y + y"-1 (n>4),

(El)
«3

x3

3

x3

Before the proof of the proposition we need a lemma.

(8.6) LEMMA. Let S be a convergent power series ring A;{«o, *i, • • • , %d) over an

braically closed field k of characteristic 0. Then for any unit element u in S and for any
positive integer n, there is a power series v in S such that vn = u. In particular, there
is a k-algebra automorphism of S which sends XQ to UXQ and sends each xi to itself for
i> 1.

PROOF: Considering the algebraic equation Xn — u = 0 mod (zo, x\,... , xjjS, we see
that it has n distinct solutions in k = S/(xo, x\1... , xjjS. Since S is a Henselian ring, it
follows that the equation Xn — u = 0 has a solution in 5, showing the existence of v. The
last statement of the lemma follows from the inverse function theorem. In fact, defining
the fc-algebra map <p : S —• S by <p(xo) = VXQ and <p(xi) = Xi (i > 1), we can see that <p

is an automorphism. |

Before the proof of Proposition (8.5) we note the following fact:

For the ring R as in (8.5), a general element j / i n m - m 2 satisfies ytnn = mn+1 for some

integer n. Such an element is called a minimal reduction of m and it satisfies;

(8.6.1) R is module-finite over a subalgebra T = k{y} and there is an isomorphism of

T-algebras R ~ T[X]/(g(X)) with deg(g(X)) = e{R). (Matsumura [48].)

PROOF OF (8.5): We divide the proof into several cases.

(i) The case e(R) = 2: Take a minimal reduction y of the maximal ideal m of i2.

Then we may describe as R = T[x]/(x2 + a) for some a €  T. Thus we may assume that
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/ = x2 + a. Write a as wt/n+1 with u a unit in T. Then by (8.6), after applying a suitable
automorphism on S, we can take / = x2 + t/n+1. This is the case (^4n)-

(ii) The case e(R) = 3 with {/ = 0} has two or three different tangent directions:
In this case / is decomposed as the product g-h (g,h €  S) where {g = 0} and {h = 0} have
distinct tangents. Since e(R) = e(S/(g)) + e(S/(h)), we may assume that e(S/(g)) = 2
and e(S/(h)) = 1. We can take y €  R whose images in S/(g) and in S/(h) are minimal
reductions of their maximal ideals. As in the first case we may have S/(g) ~ T[X]/(X2 +
yn) where T = k{y}. Then R ~ T[X]/((X - t)(X2 + yn)) (i G T), therefore we may
assume that / = (x — t)(x2 + yn) (n > 2). Suppose n > 3. Since {/ = 0} has different
tangent directions, we see that t = uy with u a unit in T. Replacing y by a: — uy
we can change / into the form y(ax2 + bxyn~l + cyn) (a, 6, c units in 5). Then putting
£ = ahx + i c r H y " - 1 and r) = y(c- \a~lb2yn-2)n, we have / = T/(^2 + 7/n) up to a unit;
this is the case (Z)n+2) (n > 3). We leave the reader the proof for the case n = 2. In this
case / could be chosen as y(x2 + y2) that is the equation of

(iii) The case e(R) = 3 with / = 0 has a unique tangent direction:
We further divide this into two cases.

(iii — 1) The case when f is reducible: Taking y as a minimal reduction and putting
T = k{y}, we may assume that / = x(x2+ax+b) (a, b 6 T). Since z3 should be the initial
form of / , we may write / = x(x2 + cxy2 + dyz) (c, d €  T), where d must be a unit in T
because of (8.4). Then using (8.6), / can be put into the form x(x2 +exy2 + y3) (e €  T).
We replace y by y — \ex to get

f = x(x2 + y* + sx2y + tx*),

for some s,t €  S. Changing x(l + sy + <s)5 to aj, we finally get / = x(x2 + y3), the
equation of (.EV), up to a unit.

(iii-2) The case when f is irreducible: We may write R = k{y}[X]/(X3+aX+b) (a, 6 €
T — k{y}), hence we may assume that / = xz + ax + 6. Since R is an integral domain,
we can see that 6 ^ 0 . If a = 0 then, by (8.6), / can be put into the form x3 H- ym, where
m = 4 or 5 by (8.4). These are the cases (EQ) and (Eg). So we assume that a / 0. Then
we may write

where u €  T is a unit element. Since z3 must be the initial form of / , we see that n > 3
and rn > 4. We claim here that either n > 4 or m = 4. Suppose not. Then we could find
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a solution £ €  T to the equation; £3 + w£2 + y(2m~9) = 0. In fact, modulo y, the equation
has a simple root —w, and it can be lifted to a solution in T, since T is a Henselian ring.
Furthermore £ is a unit in T as well as u. Then it would follow that f(i~xym~3^ y) = 0
in (*). (Use n = 3 here.) Hence / would be divisible by x — C^y771"3, which contradicts
that / is irreducible. Hence we have shown that either n > 4 or m = 4.

If m = 4 in (*), then replacing y by y — \uxyn~3 and using (8.6) we have / = a;3 +
wy2x2 + y4 for some w €  5, and a further change of variables xi-+a; + |wy2 takes / into
the form a;3 + ey4 (e is a unit). Therefore by (8.6) we may have / = xz + y4, which is the

If n > 4 and m ^ 4, then by (8.4) we see that m = 5. Replacing y by I/ + [MZ and
using (8.6) we have / = x3 + wy3x2 + y5 for some w £ S, and then by a further change
of variables x »—• a + |wy3, / can be put into the form z3 + eyb (e is a unit). Finally, by
(8.6), we have / = a;3 + y5, which is the case (E$). This completes the proof. |

(8.7) Exercise. Prove the converse of the proposition. Namely, if / is one of the polyno-
mials in (8.5), then the ring R = S/(f) is a simple singularity. In this case describe the
set c(f) for each polynomial.

(8.8) THEOREM. Lei S = k{x, y, Z2,2:3,... , zj} and assume thai k is an algebraically
closed field of characteristic 0. If R = S/(f) is a simple singularity, then after a suitable
change of variables, f is equal to one of the following polynomials:

(An)

(Dn)

(Ee)

(E7)

(Es) x3 + y* + zl + zl + ... + z2
d.

PROOF: Note that d is the dimension of the ring R. \id= 1, then the theorem is nothing
but the previous proposition. So we may assume d > 2. In this case we know by (8.2)
that e(R) = 2. In other words / €  n2 — n3. Then by the Weierstrass preparation theorem,
after changing variables, one can write

f(x, y, z2, z3, . . . , zd) = g(x, y, z2, z3 , . . . , zd_i) + zdi

where g is in S' = k{x, y, z2, 2:3,... , zd_i). Here it can be seen that S'/(g) is also a simple
singularity. In fact it is an easy exercise to show that the following mapping is injective:

c(g) —> c(f)
I .—> (I,zd).

*2 +
«v
Z 3 +

• j / n + 1 H

• x y 3
 +

Ml-+ 4 + .
\ + 4 +

34 + --• +%

( n >

( n >
1).

4),
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Hence the theorem is proved by induction on d. |

(8.9) Exercise. Prove the converse of the theorem. (Hint: If / is one of the polynomials
in (8.8) and if / G J2, then 2*,- = df/dzi G I. Thus the exercise follows from (8.7).)

It is our main purpose here to prove the following theorem.

(8.10) THEOREM. (Buchweitz-Greuel-Schreyer [19]) If a hypersurface R = S/(f) is

of finite representation type, then R is a simple singularity.

To prove this we need some more preliminaries.

(8.11) DEFINITION. Let y> : 5 ( n ) -> 5 ( n ) be a homomorphism of free ^-modules.
Then define $ : S^ <g)5 (S(n))* -^ 5 to be *(f®g) = g(<p(f)) (/ G S^n\g G (S^)*) and
denote the image of $ by I(<p). Note that if we write ^ a s a square matrix of size n by
fixing a base of S^n\ then I(<p) is an ideal of S generated by all the entries in the matrix.

Let M be a CM module over R without free summands and let (<p, tp) be a reduced
matrix factorization of / corresponding to M, i.e. M = Coker(<p, tf>) with the notation in
(7.4). Then define an ideal I(M) of 5 as

Note that I(M) is independent of the choice of (y?, ifi). In fact, if (y>', if)1) is another reduced
matrix factorization of / with M = Coker(<p', V>')> t n e n ^ must be equivalent to (<p, i/>)

by (7.6). Then by the definition of equivalence, we have I(<p) = -f(<£>') and /(VO = H*!*1)-

Also note that I(M © N) = I(M) + I(N) for any CM modules M, N. It thus follows
that if {M\\ A G A} is a complete set of indecomposable CM modules over R, then the
set {/(M)| M is a CM module over R} equals {£A€ A I(M\)\ A is a finite subset of A}.
In particular, if R has only a finite number of isomorphism classes of indecomposable CM
modules, then this set is finite.

We evidently have the following lemma.

(8.12) LEMMA. Let M be a CM module over a hypersurface R = S/(f). Then f G
I{M)2, that is, I(M) G c(f).

PROOF: Let (y?, i/>) be a matrix factorization of / . Since (p • if) = f • I5(n), we see that

/ e i(v)i(1>) c i(M)2. i
We can prove the following:

(8.13) LEMMA. For a hypersurface R = S/(f), consider I as a mapping from the set
of classes of CM modules over R without free summands into c(f). Then the mapping is
surjective.
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Theorem (8.10) will be a straightforward consequence of this lemma. In fact if R has
only a finite number of indecomposable CM modules, then the image of / is finite, hence
c(f) is a finite set by the lemma and R is a simple singularity.

We introduce some notation for the proof of Lemma (8.13).
Let R = S/(f) be a hypersurface as above, where / belongs to n2. Then / can be

written as

r
(8.14.1) / = £ xiyi (xi,yien).

Then we define linear maps on an exterior algebra /\S^r\

(8.14.2) When {ei, e2 , . . . , er} is a basis of S^r\

t

8 - ( e h A ei2 A . . . A eit) = £ ( - 1 ) J ~ l a j * J ( e * i A . . . A C J . A . . . . A e ; t ) ,
i

There is thus no difficulty in showing that 8+ and 8- are differential maps on /\ SM of

degree respectively +1 and —1. ( 8+ = #1 = 0 and 8± sends an exterior product of degree

i to that of degree i ± 1.) Setting 6 = 8+ 4- £-, we see that

(8.14.3) 62 = f-l{As(t))

Actually, since 8+ = 8\_ = 0, we have 82 = 8+8- + 8-8+ and an easy computation shows

(8+8- + 8_8+)(eil A . . . A eit) = f • etl A . . . A e8<. (Check this.)

By (8.14.2) and (8.14.3) we have shown:

(8.14) LEMMA. With the above notation, (8,8) gives a matrix factorization of f and

1(8) = (zX, Z2, . • • , Xr, VU 2/2, • • • , Vr)S.

Now we prove Lemma (8.13).

Let / be an element of c(f). We want to construct a CM module M over R with

I(M) = I. Let / be generated by {z i ,z 2 , . . . ,xr}. Then / can be written as / =

E L i xiVi (Vi €  / ) , for / e I2. Constructing 8 as in (8.14.2), we have a reduced matrix

factorization (8,8) of / with the property 1(8) = I. It is sufficient to take the CM module

Coker(6, 8) as M. This finishes the proof of (8.13) and hence (8.10). I

In Theorem (8.10) the assumption that R is a hypersurface is superfluous. Actually it
is enough to assume R is a Gorenstein ring.
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(8.15) THEOREM. (Herzog [35]) Let R be a ring of the form S/a where S is a regular
local ring with maximal ideal n and a is an ideal of S with a C n2. Assume that R is a
Gorenstein ring of finite representation type. Then a is a principal ideal, hence R is a
hypersurface.

By this theorem, (8.10) can be strengthened to:

(8.16) COROLLARY. Assume that R is a Gorenstein ring and is a homomorphic
image of a regular local ring. If R is of finite representation type, then R is a simple
singularity.

In order to prove (8.15) we need two lemmas.

(8.17) LEMMA. Let R be a Gorenstein local ring and let

0—• N -2-> F -UM—>0

be an exact sequence of CM R-modules, where F is a free R-module and p 0 R/xn is an
isomorphism. Then if M is indecomposable, so is N.

PROOF: Suppose N is decomposable, so that N = N\ 0 N2 (N\ ^ 0, N2 ^ 0) and let
q be (qi,q2) along this decomposition. Take the dual of the sequence by the canonical
module to obtain an exact sequence:

0 —+ M1 —> F1 X^A7 N\ 0 N'2 —> 0.

Note that, since R is Gorenstein, F ' is a free module, hence it is a free cover of N\ © N'2.
First suppose that neither N\ nor N2 are free. In this case M1 contains syz1 N\ ©syz1 N'2
as a direct summand. Since M" ~ M, this contradicts that M is indecomposable.
Secondly consider the case when N\ is free. Then q\ must be a split epimorphism and
hence q\ is a split monomorphism. In particular, q\ (8) R/vci is a monomorphism. Since
p • gi = 0, this contradicts that p®iJ /m  is an isomorphism. These contradictions show
that JV is indecomposable. |

Next we remark that the converse of (7.2) is true for Gorenstein rings.

(8.18) LEMMA. Let R be S/a as in (8.15). (S is a regular local ring and a C n2.j / /
a free resolution of every CM module M over R is periodic except for a finite part, then
a is a principal ideal.

Here we say that a free resolution
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is periodic except for a finite part if there are positive integers n and h with
(fp for any fi > n.

PROOF: Recall first the following: Suppose we are given a minimal free resolution of an
R-module M:

> Fn —> Fn_x —> > Fi —> Fo —> M —> 0.

We denote the rank of each Fn by Pn{M) and call it the n-th Betti number of M. Tate
[63] showed that a is a principal ideal if and only if there is an upper bound for the set
{/?»(*)! 1 < n < oo}.

In the following we want to show that under the assumption of the lemma, there is a
bound for the Betti numbers of k. To do this, consider the free resolution of k to get an
exact sequence

0 —> M —• Fd_x —> • F2 —> Fi —> Fo = R —> k —• 0,

where d denotes the dimension of R. Note from (1.4) that M is a CM module over R.
Decompose M into indecomposable modules as M = J2j Mj. Since the free resolutions
of the Mj are periodic except for a finite part, there are bounds for the Betti numbers
for the Mj. It, thus, follows that the set of Betti numbers of k also has a bound. |

Now we proceed to the proof of Theorem (8.15).
Let R be the same as in (8.15). It is, from (8.18), sufficient to show that any CM

module M over R has a free resolution with periodicity except for a finite part. Clearly
we may assume M is an indecomposable CM module. Consider the minimal free cover
of M to have an exact sequence:

O^N —>F0-^M —> 0.

Note that p (8) R/m is an isomorphism. We then know from (8.17) that N is also an
indecomposable CM module. Write $(M) instead of N. Then $ gives a mapping from the
set of classes of indecomposable CM modules over R into itself. Since this is a finite set, it
can easily be seen that there are positive integers n and h such that ^^h(M) = $^(M)
if /x > ?z. This implies that the free resolution of M is periodic except for a finite part. |
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Chapter 9. One-dimensional local rings of finite representation type

We have shown in the last chapter that Gorenstein rings of finite representation type
are simple singularities. This chapter aims at showing that the converse is true for one-
dimensional local rings. More generally we are able to provide a necessary and sufficient
condition for one dimensional local rings to be of finite representation type; see Theorem
(9.2). Furthermore we can draw the AR quivers for simple singularities of dimension one.

Throughout the chapter (i£, m, k) is a one-dimensional analytic local algebra over k}

where k is an algebraically closed field of characteristic 0. Since we are interested in the
finiteness of representation type, we always assume R has only an isolated singularity,
or equivalently R is reduced; see (3.1) and (4.22). As before let £(R) be the category of
CM modules over R. Recall that the objects in £(R) are exactly the modules without
torsion, (1.5.2).

(9.1) DEFINITION. Let R* be the integral closure of R in its total quotient ring. Note
that R* is also a one-dimensional (not necessarily local) ring which is finite over R. A
local ring S is said to birationally dominate R if R C S C R*.

One of the aims of this chapter is to prove

(9.2) THEOREM. (Greuel-Knorrer [32]) The following two conditions are equivalent:
(9.2.1) R is of finite representation type;

(9.2.2) R birationally dominates a simple curve singularity.

In particular we have:

(9.3) COROLLARY. A local ring of simple singularity of dimension one is of finite

representation type.

For example the subring A;{<3,<4,<5} of k{t} birationally dominates &{<3,f4}, (E^), and

fc{<3,<5}, (Eg), hence it is of finite representation type.
We start by remarking that finiteness of representation type will be inherited by bira-

tional dominance. More precisely,
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(9.4) LEMMA. Assume S biraiionally dominates R. If C(R) is of finite representation
type, then so is £(S).

PROOF: Let M be a CM module over S. Since R C 5, M can be regarded as a module
over R. It is then clear that M is torsion-free as an R-module, hence M €  £(R)- Let N
be another CM module over S. Note that

(9.4.1) Hom#(M, N) = Hom5(M, TV).

Indeed, Horri5(M, N) is naturally considered as a subset of Hom^(M, N). Here one
can see that any element / in Hom^(M, N) is an S'-homomorphism as follows: Let
s €  S and let x G M. Since there is a nonzero divisor r in R with rs G R, we have
rf(sx) = f(rsx) = rsf(x). Hence f(sx) = sf(x), because r is a nonzero divisor on N.

This shows that / is an 5-homomorphism.
Now let M be an indecomposable CM module over S. Then it is also an indecompos-

able CM module as an ij-module. In fact, EndR(M) = Ends(M) by (9.4.1), and this is
a (noncommutative) local ring. It also follows from (9.4.1) that if M and N are noniso-
morphic indecomposable CM modules over 5, then they are not isomorphic to each other
when regarded as i2-modules. Therefore the set of isomorphism classes of indecomposable
CM modules over S is a subset of that over R. |

The following lemma is the key in the proof of one implication in the theorem.

(9.5) LEMMA. (Green-Reiner [31], Jacobinski [41]) Let R be as above and suppose
that R is of finite representation type. Then the following inequalities hold:
(9.5.1) lengthR(R*ImR*) < 3, and
(9.5.2) lengthR(mR* + R/m2R* + R)<1.

PROOF: (9.5.1): Write T = R*/mR*, I = lengthR(T) and denote by X the Grassmann
space consisting of all two-dimensional &-subspaces of T. Note that X is an algebraic
variety over k of dimension 2(1 — 2). Since R* is a semi-local principal ideal ring, we see
that T has only a finite number of ideals. Therefore we may find a (Zariski-)open set
Y of X so that any elements in Y generate the same ideal in T. Let G be the group of
units in T, which is an algebraic group of dimension at most /. It is easily seen that G

acts on Y by multiplication of elements in T. Furthermore by this action the subgroup
k* consisting of all nonzero elements in k acts trivially, therefore the group G/k* acts on
Y.

For any element TJ in Y we denote by £(77) the inverse image of rj in R*. Note that
L(rj) (rj €  Y) are fractional i2-ideals in R*} hence they are CM modules over R, and that
L(rj)R* = L(r/)R* (rj.rj1 €  Y). Suppose L(t]) ~ L(rf') as ^-modules for 77,7/ €  Y. Then,
since L(rj)R* = L(r)')R*j the isomorphism is realized as a multiplication mapping by a
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unit element in R*. Hence there is an element g in G such that g(rj) = rf. This shows
that there is a surjective mapping from the set of isomorphism classes of L(TJ) (rj G Y)

onto the orbit space of G/k* in Y. Since R is of finite representation type, we conclude
that the number of orbits is finite, therefore dim(F) < dim(G) — 1, or 2(/ — 2) < / — 1.
This exactly means / < 3.

Before commencing the proof of (9.5.2) we note the following:

(9.5.3) If there is an infinite set {Sa\ a €  A} of #-subalgebras of R* with Sa ± Sp for
a ^ /?, then R is not of finite representation type.

To see this, first note that each Sa is a CM module when regarded as an ^-module,
since it is a submodule of R* hence torsion-free. Next note that

(*) Endj^S^) ~ Sa as an .ft-algebra.

In fact, as in (9.4.1) we have End#(5a) ~ End5a(S'a) and the latter is isomorphic to Sa.
This proves (*). Now we show that {Sa\ a 6 A} are all nonisomorphic i^-modules. In
fact, if Sa ~ Sp as an R-module, then by (*) we see that Sa ~ Sp as an R-algebra. Since
Sa and Sp have the common total quotient ring, the last isomorphism gives the equality
Sa = Sp, hence a = ft as required. If the total quotient ring of R is the product of n fields,
then clearly each Sa is decomposed as a direct sum of at most n i^-modules. Therefore
there are infinitely many nonisomorphic indecomposable i2-summands of Sa (en €  A).
Thus we have shown (9.5.3).

Now we prove (9.5.2). Assume the contrary. Then we can choose / and g in tni£* so

that their images in vaR* + R/vn?R* -f R are linearly independent over k. For any or in A;,

we put Sa = R[f + ocg] which is an i£-subalgebra of R*. Note that the Jacobson radical

Ja of Sa is (m, / + ag)Sa- We claim that

(**) Sa^Sp if a / / ? .

To see this, let Ja denote the R-module Ja/(m2#* + R) C\ Ja which is a submodule
of mR* + R/m2R* + R. Since m(/ + ag) C m2R* + R, it is easy to see that Ja is a
fc-vector space generated by a single element / + ag. If Sa = Sp, then it is obvious that
Ja = Jp hence that Ja = Jp. This exactly means that / + ctg and f + fig generate the
same subspace in mR* -f R/xa2R* + R, which forces a = ft, since / and g are linearly
independent. This proves (**). Thus (9.5.2) follows by applying (9.5.3) to {Sa\ a e k}. §

(9.6) REMARK. It is known that the conditions (9.5.1) and (9.5.2) are necessary and
sufficient for R to be of finite representation type. See Green-Reiner [31] for the details.
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Recall that the conductor c of R is an ideal of both R and R*, which is defined
to be {x G JR*| xR* C R}. Since R* ~ k{t} x k{t} x • • x k{t} (a product of m
local rings for some m), we may consider the valuation v,- on the e-th component k{t}
and define v = v\ x v2 x • • • x vm : R* —• l\l£?' where N ^ = N U {OO}. Then v(#) is a
subsemigroup of N ^ . Define the partial order on N ^ as follows: a = (a\, a<i,... , am) <
6 = (&i, &2,... J 6m) if and only if a,- < 6$- for all i. We note that a fc-subalgebra S of R*
is birational with #* if and only if the set N ^ — v(S) is finite. In particular the set
C = {a G V(JR)| 6 G v(R) for all 6 = (61,62,... , 6m) with a_ < 6} is nonempty. Define
c = (ci, C2,... , cm) to be the (unique) minimal element in C. Then it is easy to see that
the conductor ideal of R is generated by the element (tCl, <C2,... , tCm) as an ideal of R*.
We call c the conductor of the semigroup v(R).

Also v(R)C\{a G Noo | <L ^ (0,0,. . . ,0)} has a unique minimal element (ei, e2,.. . , em);
it is not hard to see that e = Yl^Li e* ^s the multiplicity of R along tn.

The implication (9.2.1) => (9.2.2) follows from the next lemma together with (9.5).

(9.7) LEMMA. Suppose R satisfies the conditions (9.5.1) and (9.5.2). Then R birationally
dominates a simple curve singularity.

PROOF: First of all recall that lengthR(R*/mR*) is equal to the multiplicity e of the ring
R along m. Therefore the condition (9.5.1) forces R to have m irreducible components
with m < 3.

Suppose first that m = 1, and hence R is an integral domain and R* = k{t}.
If e = 2, then R contains an element x with v(x) = 2. Then applying (8.6) to R* we

may assume t2 G R. Let n be the conductor of the semigroup v(R). Notice that n is an
even integer and that <n+1 G R. Hence R birationally dominates a ring k{t2,tn+1} that
is a simple curve singularity of type (An).

If e = 3, then by (8.6) we may assume that t3 G R. Note that mR*/m2R* has a ib-basis
{t3, a,/3} with v(a) = 4 and v(ft) = 5. Thus one sees from (9.5.2) that R contains 7 with
^(7) = 4 or 5.

If v(f) = 4, then the conductor of v(R) is at most 6, since {3,4} C v(R). Hence
we have tA + a<5 G R for some a G k. In this case R birationally dominates the ring
k{i*,tA 4- at*} - k{y,x}/(f) where f = x3 - Zaxy3 - y\\ + a3y). Then by (Hi - 2)
from the proof of (8.5), / can be changed into the form s3 + y* after applying a suitable
automorphism of k{y, x}. Therefore R birationally dominates the simple singularity of
type (E6).

If 1̂ (7) = 5? then the conductor of v(R) is at most 8, since {3,5} C v(R). Hence we
have <5 + at7 €R  for some a G k. Then R conatins the ring k{t3,tb + at7} ~ k{y, x}/(f)
where f = x3 — ZaxyA — yb(l + a3y2). Here applying again (Hi — 2) from the proof of
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(8.5), we can change / into the form a;3-ft/5, whence R birationally dominates the simple
singularity of type

Now suppose that ra = 2 and that R* = k{t} x k{t}.
If e = 2, then by (8.6) we may assume that (t,t) belongs to R. Let (ci,C2) be the

conductor of v(R) and take an integer n with n > max{ci,C2}. Then from the definition
of conductors we see that (<n, — tn) G R, therefore R birationally dominates the ring
k{(t,t), (*n, -in)} ~ k{x,y}/(y2 - x2n) that is the simple singularity of type (A2n-i).

If e = 3, then we may assume that (1,2) G v(R). Consider the semigroup H = {h G
Noo| (oo,/i) G v(R)}. First we claim that {2,3} n H ^ 0. Indeed, if not, there would
be no element in R with the value (oo, fi) for // = 2, 3. Since v(mR*) = [l,oo] x [2,oo],
this would imply that the module mR* -f R/tn2R* -f R has linearly independent elements
x and y whose inverse images in R* have values v(x) = (oo,2), v(y) = (oo,3). This
contradicts the condition (9.5.2), therefore either 2 or 3 belongs to H.

If 2 G H, then there is an element (0, a) with vi(a) = 2, thus making use of (8.6) we
may assume that £ = (0,<2) G R. Denoting by n the conductor of the semigoup H, we
have rj = (i, i2 + cmtm + cm+i<m+1 + .. . + cn-iin-1) €  R for some CJ €  k (m < j < n - 1)
with cm ^ 0, because (1,2) €  v(it). Note that n is an even integer and that m can be
taken as an odd integer. Subtracting a multiple of £ from rj and using the fact that any
((),*') (/ > n) is in i?, we may assume that {t,tm) €  .R. Thus i? birationally dominates
the ring fc{(Mm), (<M2)} ^ fc{z,t/}/(y(z2 " 2/m))> the simple singularity of type (Dm+2).

Suppose 3 €  H. We may assume that (i,i2) €  R. Letting (0, a) be an element with
v2(ct) = 3? we see that R contains (0,cd2), (0, a2) and (0,a*4) whose values are (oo, 5),
(oo, 6) and (oo,7), hence H has conductor at most 5. Thus (0,f3 + atA) G R for some
a€k.  Then # birationally dominates the ring fc{(M2), (<M3 4- aiA)} ~ ib{y, x}/(a;(a;2 -
2axy2 — yz -f a2y4)) which is the ring of simple singularity of type (£7) by (Hi — 1) from
the proof of (8.5).

Finally consider the case when m = 3 and hence R* = k{t} x k{t} x k{t}.
In this case we have e = 3 and (1,1,1) G v(R). We claim that one of (1,1, 00), (1, 00,1)

and (00,1,1) belongs to v(R). Indeed, if none of them were in v(R), then the elements
a and ft in R* with v(a) = (1,1, 00), v(/3) = (l,oo, 1) would give linearly independent
elements in mR* + R/m2R* + R, which would be against the condition (9.5.2). Thus
we may assume that (1,1, 00) G v(R), and hence using (8.6) we may also assume that
y = (i,t,0) G R. Since there is an element x with v(x) = (1,1,1), applying (8.6) to
the third component and subtracting a suitable power series of y from aj, we can take
x = (t + p(i))t,t) G R for some p(t) with v\(p(t)) > 2. Then R birationally dominates
the ring S = k{x, y} with the relation / = y(x — y)(x — y — p(y))- Since {/ = 0} has
two or three different tangent directions and S has multiplicity 3, we see by (ii) from the
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proof of (8.5) that S is a simple curve singularity of ZMype. |

Proof of (9.2.2) => (9.2.1): We provide below two different proofs of this.
For the first, we assume some results to be proved in later chapters. (Since they will

be proved independently of this chapter, there is no fear of a logical cycle.)
Let R be a local ring which birationally dominates a simple singularity S. By (9.4) it

suffices to show that £(5) is of finite representation type. Let S = k{x,y}/(f) with /
one of the polynomials in (8.5). Define then a simple singularity S^ of dimension two as
follows:

In the next chapter we will see that simple singularities of dimension two are always of
finite representation type; see (10.14) and (10.15). On the other hand, it will be seen
in Chapter 12 that the finiteness of representation type of S is equivalent to that of 5*
(Theorem (12.5)). From these results.we obtain that £(S) is of finite representation type
and the proof is completed.

The second proof of this is more direct but also more complicated. As above it is

sufficient to show that simple singularities are of finite representation type. Therefore

if we have a complete description of AR quivers for simple singularities and if we know

they are finite, the proof will be completed. We shall describe the AR quivers for simple

curve singularities below to check their finiteness.

First notice the following fact.

(9.8) LEMMA. Let R be an analytic reduced local ring thai is a hypersurface of dimension
one. Then the AR translation r is given by

(9.8.1) r(M) ~ syz^M (M £ C{R)),

and r satisfies r2 = 1. Furthermore, ifm — £,-M,- is a decomposition of m into indecom-
posable modules, then the natural inclusions Mi —> R are the all of irreducible morphisms
ending in R. Likewise, there are irreducible morphisms R —• T{M{) starting from R.

PROOF: Let • • • —> F\ —> FQ —• M —• 0 be a free resolution of M. Then by definition
we have an exact sequence 0 —* M* —• FQ —• F* —»• tr(M) —* 0, and hence 0 —• M* —•
FQ —• (r(M))* —• 0 by (3.11). Since R is a Gorenstein ring, using (1.13) we have an
exact sequence 0 —» r(M) —• Fo —• M —> 0, and (9.8.1) follows from this.

Since any CM module over R has a periodic free resolution with periodicity 2 (c.f.(7.2)),
we see that syz2 M ~ M for any M €  £(#), in particular, T2(M) = M.

Let X —• R be an irreducible morphism. Then the image lies inside the maximal ideal,
and hence the map is decomposed as X —• m C R. Therefore by definition of irreducible
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morphisms, X ~ Mi for some i and the morphism is a natural inclusion. This proves
the second statement. Furthermore by the duality theorem, R —• M* are irreducible
morphims starting from R. Since R is an isolated singularity, there is an AR sequence
starting from Mi that must be of the form:

0 -• Mi -> R © M -> M? -> 0,

for some M €  £(#). Therefore r(Aff) = Aft-, and as a consequence r(Afj) = T2(M?) =
Mf. •

Let us start drawing the AR quivers.
The singularities of type (An) with n even were done in (5.12). So we begin with rings

of type (An) for odd n.

(9.9) Let / = x2 + yn + 1 and let # = k{x,y}/(f) where n is an odd integer. Since
/ = (y(»+i)/2 + i a - ) ^^ 1 ) / 2 - is) with i = >/=T, the modules N± := fl/(y(n+1)/2 ± is)
are CM modules over R. N+ (resp. N-) is given by the matrix factorization (i/(n+1)'2 +
ix, 2/(

n+1)/2 - ix) (resp. (y(n+1)/2 - la;, y(n+1)/2 + ia;)). Consider the square matrices

on A;{a;, I/}. It is clear that each (y?j,V?j) gives a matrix factorization of / . Let Mj =
Coker(<pj, <pj). It is obvious that Mo ~ #, Mj ĉ  Mn_|_i_j and M(n+1y2 — ^+ ® ^~-

First of all we show that N± and Mj (0 < j < (n — l)/2) are all indecomposable.
For N± and Mo this is clear because they are generated by single elements. It is true
as well that any CM module generated by one element is isomorphic to one of them. If
Mj (1 5i j 5: (n — l)/2) were decomposed, say Mj ~ i © 5, then A and B would be
generated by one element and nonfree, and so isomorphic to N±. Since I{<fj) = (x, yi)
is not equal to any of /(AT+), I(N-) and /(AT+) -f I(N-), this is a contradiction. (See
(8.11) for the definition of /.)

Next it follows from (9.8) and (7.7) that

r{Mj) = Mj, T(N+) = N- and r(N.) = 7V+.

Since we have an exact sequence 0 —• N- —+ R -^ N+ —»• 0, we obtain an epimorphism
End#(iV+) —• Extl

R(N+, N-) and it is easy to see that the endomorphism given by
multiplication by y(n~1)/2 on JV+ is sent to the socle element of Ext^(iV+, N-). Thus
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the exact sequence corresponding to the socle of Ext^(N+, JV_) is given by the extension

i a . y(n-l)/2

Hence the AR sequence ending in N+ is

0 —> N- —> L 0;

see (3.13) and (7.8), where one can easily see that X is isomorphic to M(n_iy2- Similarly
we can obtain the AR sequence ending 7V_:

0 — N+ —> M (n_1)/2

In the same way as this the extensions

0.

give the AR sequences

j — • 0,

for all i (1 < i < (n — l)/2). Consequently we obtain a part of the AR quiver for R:

N.

M <n-n

Figure (9.9.1). (An) for odd n
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We show that this graph is a connected component of the AR quiver. For this it is
sufficient to show that if n > 3 (resp. n = 1), then there is no CM module other than Mi
(resp. 7V+ and iV_) that is connected to R by arrows. It is, however, a direct consequence
of (9.8), since Mi ~ m if n > 3 and N+ ® M ~ m if n = 1. Thus the graph (9.9.1) is
the connected component of the AR quiver of R, and Theorem (6.2) implies that this is
the whole quiver.

(9.10) Exercise. Prove (5.11) again by using the same argument as above.

(9.11) Next consider the simple singularities of type (Dn) where n is an odd integer.
Let R = k{x, y}/(f) where / = x2y + yn~l with n odd. Then (a,/?) = (*/, x2 + yn~2)
and (/?, a) = (x2 + yn~2, y) are matrix factorizations of / . We denote Coker(a,/3) (resp.
Coker(/?,a)) by A (resp. B).

We take the 2 x 2 matrices:

for j with 0 < .;' < n — 3. It can be easily seen that (V^JVV) an<^ (CjiVj) a r e rnatrix
factorizations of / . Putting

(9.11.3) Mj = Coker(W >^), ^ = Coker (^ ,^ ) ,

X; = Coker(^, 77j), Yj = Coker(7/j, (,-),

we see that

(9.11.4) M o - 5 , A T 0 - ^ e ^ , Xo^ i ? , y 0 ^ ^ ,

and that

*(n-l)/2 - y(n-l)/2-

Furthermore,

(9.11.5) Mj2> Mn-j.2, Nj-Nn-j.2, Xj-Yn-j-i and Yj ~ Xn-j-u

for 1 < j < n — 3. The modules in (9.11.3) are indecomposable CM modules whenever
j > 1. Notice that Mj (resp. Yj) is isomorphic to the ideal generated by (xy, y-7*1) (resp.
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The AR sequences are given by the following extensions:

a x

3 x
0 OL

(

(

o

o

£->• 0,

where e7 = I .> I. Therefore one of the connected components of the AR
\-yn~J 0/

quiver of R is obtained:

A

B

E

Figure (9.11.5). (!>„) /or orfrf n

Using (9.8) and (6.2) we may claim that this graph is the whole quiver and that the
ring R must be of finite representation type.

(9.12) Now consider the simple curve singularity of type (Dn) with n even. Let R =
k{x, y}/(f) where / = x2y+yn~x with n even. In this case the AR quiver will be obtained
by a subtle change of (9.11).
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Let A = Coker(2/, x2 +yn~2), B = Coker(z2 + yn~2, y) as in (9.11) and define matrices
and modules as in (9.11.1), (9.11.2) and (9.11.3). Furthermore define modules as follows:

C+ = Cokei(y(x + iyW2), x - iy
D+ = Coker(z - iy^2)'2, y(x + «V(""

C. = Cokei(y(x - i/"-^'2), x + iy
D_ = Coker(* + iy^-^l2, y(x - iy^-

The equalities in (9.11.4) and (9.11.5) are still valid and

M{n-2)/2-D+®D-, Ar ( n _ 2 ) / 2 ~C + ©C_.

The AR sequences are obtained by the same extensions as in (9.11) and the AR quiver

Y < „ - ,2) S2

( n - 2 ) S 2

Figure (9.12.1). (Dn) for even n

(9.13) Now let us consider the case (i?6) and so let R = k{x,y}/(f) with / = x3 + yA.
Take the matrices

(x2 »2\

' y" x- xy"
xy -y2 x2

^x2 -xy -y3

0 =
y o x
* -y2 o
O x -y
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each pair of which gives a matrix factorization of / . We define the CM modules as follows:

Mi = Cokerfa, ft), N{ = Coker(ft, y>t) (• = 1, 2),

A = Coker(a, 0), B = Coker(/?, a).

It is easy to see that there are isomorphisms

Nx ~ m, Mx ~ (x\ y)R, N2~M2~ (x\ y2)R, B~{x\ xy, y2)R,

so that they are ideals, and A has rank two. Furthermore,

T(MI) = NX, r(Nl) = Mu r(M2) = M2, r(A) = B and r(B) = A.

The extensions

/v?i €i\  {fa €2

where e\ = I 2 I an<^ ^2 — [ 2 I»• give the AR sequences
\ — xy \)) \~~y Oy

0 —•> Mi —+ A —> TVi —+ 0,

0 —>Ni —> B e R —> Mi —• 0.

On the other hand, the matrices

0 fa

( 0 y\ /0 xy\

I and £ 4 = 1 I, give a new indecomposable matrix factoriza-
—xy [)J \y 0 )tion (̂ , ?/), and letting X = Coker(£, rj) ~ Coker(?;, ^), we have the AR sequence

0 —+ M2 —> X —+ M2 —•* 0.

The AR quiver is shown in Figure (9.13.1).

(9.14) Let R = fc{s, y}/{f) with / = a;3 + xy3, and so i? is a simple singularity of type
(#7). In this case the following pairs of matrices give (non-isomorphic) indecomposable
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V
<B

M2^X
^N

R

•N,

Figure (9.13.1). (Ee)

matrix-factorizations of /:

and finally,

with e =

= \ xy y2 -x2

\ x2 xy xy2

x2 -i

6 = x -i

- " • ) • * • (

*> y

~(*2 y2\
'-\xy -x)'

m =

m =

(y

h{ o
( x

-xy

\ o

(6 -
0 -

0 x
xy 0
-x y

0
X2

-xy

\

I
y\

= Coker(a,y3), B = Coker(/?,a), C = Coker(7,«), D = Coker(5,7),

JJ), Yt = Coker(»/,-, 6)
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C ~~

Figure (9.14.1). (E7)

for i = 1, 2, we obtain the AR quiver as shown in Figure (9.14.1).

(9.15) Let R be a simple curve singularity of type (E$), so R = k{x,y}/(f) with
/ = x3 + y5 • Then the indecomposable matrix-factorizations of / are one of the following
pairs of matrices:

<*2 =

71 =

72 =
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Defining the CM modules by

M,- = Coker(v?,-,V;*))

-Ai = Coker(a,-,/?,),

we can describe the AR quiver:

Bt-=Coker(A-,at-),

N2-+D2

Figure (9.15.1). (£g)

(9.16) REMARK. Once we know the AR quivers of simple curve singularities, it is easy
to describe AR quivers for rings that birationally dominate simple singularities. For
example, Figures (9.16.1) and (9.16.2) show the AR quivers of rings k{t3,tA,th) and
k{x, y, z}/(xy, yz} zx) respectively.
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R

Figure (9.16.1)

R

Figure (9.16.2)
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Chapter 10. McKay graphs

We introduce below the McKay graph of a finite subgroup G in GL(2, k) and show
that it is exactly the same as the AR quiver for the invariant subring of k{x, y} by the
natural action of G; see Theorem (10.14). All the materials in this chapter are taken
from Auslander [6].

Let us begin with remarking on invariants by a finite group. In what follows, k is an
algebraically closed field of characteristic 0 and G is a finite subgroup of GL(2, k). We
denote by V a two dimensional k vector space with basis {x,y} on which G naturally
acts. Then the action of G can be extended to the ring S = k{x,y}, i.e., a £ G sends
f(xj y) €  S to f(<r(x), <r(y)). We now consider the invariant subring:

R = SG = {zeS\ a(z) = z for all <r 6 G}.

Denote the skew group ring by S * G, i.e., S * G = S{5(r| a £ G} as an S-module and
the product is defined by

(10.1.1) (si(ri)(s2<r2) = Si<Ti(s2)<ri<r2 (*i €  5, <r; €  G).

An S * G-module M is exactly an 5-module with G-action such that cr(sm) =

<r{s)a{m) (s 6 5, m €  M, o* €  G). Note that / : M —> N is an 5 * G-homomorphism if

and only if / is a G-homomorphism as well as an 5-homomorphism. When M and N are

S * G-modules, Horns(M, N) has the structure of S * G-module with G-action defined by

(<r/)(m) = c/for-1™) ((T €  G, m €  M, / €  Hom5(M, N)).

Note that an element in Horns(M, N) is G-invariant only when it is an S * G-
homomorphism. Hence,

T) = Hom5(M, N)G.
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Since taking G-invariants is an exact functor, the derived functors of Homs*Gr( > ) a r e

obtained as follows:

Exfs,G(M, N) = Exfs(M, Nf (i > 0).

It easily follows from this that an 5r*G-module M is projective if and only if it is projective
as an 5-module.

Let kG be the group ring in usual sense and denote by %Jl(kG) the category of finitely
generated left fcG-modules. Denoting as well the category of finitely generated left S * G-
modules by 9K(S * G), we define the functor F from 9X(kG) to Vft(S * G) as follows:

(10.1.2) F(W) = S®kW, F(f) = 15 ®k / ,

for a fcG-module W and a A;G-homomorphism / . Here the action of S * G is given by

(sa)(t 0 « ; ) = s<r(t) <g> <T(W), (S<T)(1S ® / ) = s ® cr(f) {s,i €  S, a €  G,w eW).

We also denote by p(S * G) the full subcategory of SPt(Sf * G) consisting of all projective
modules. We now have an elementary relation among these categories.

(10.1) LEMMA. The functor F gives rise to a functor from SDT(JkG) into p(S * G)
which has the left adjoint functor F1 = S/n<g>s where n is the maximal ideal (x,y)S
of S. Furthermore the functor gives a one-to-one correspondence between the sets of
isomorpshim classes of objects in these two categories.

PROOF: Let W be a fcG-module. Clearly F(W) is a free modules when regarded as
S-module, therefore F(W) is projective as an S * G-module. Hence F defines a functor
from %Jt(kG) to p(S * G) which we also denote by the same letter F.

It is clear from the definition that F1 • F is the identity on 9Jl(kG). We show that the
composition F • F1 gives the identity mapping on the objects in p(S * G). To do this,
let M be in arbitrary projective S * G-module. Recall that F • F'{M) = S (g)jfc (M/nM)
and that M is free when regarded as an 5-module. Note that the natural mapping
7T: M —• M/nM gives the minimal projective cover as an S * G-module. In other words,

(*) for any proper submodule N of M, we have ir(N) ^ M/nM.

In fact, if v(N) = M/nM then M = N + nM, hence M = N by Nakayama's lemma.
Now consider a natural mapping 5®* (M/nM)  —> M/nM. Since this is also a projective
cover as an 5 * G-module, there is an S * G-homomorphism which makes the following
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diagram commutative:

S 0* (Af/nAf) > M/nM > 0

4 I
M > M / n M > 0

We know from (*) that / must be surjective, Since M is projective, this shows that M is
a summand of 5 <8>k (M/nM). Comparing the ranks as free S-modules, we consequently
have M ~ S ®k (M/nM). |

(10.2) REMARK. Note that F is never an equivalence of categories. Actually Horn-sets
in %R(kG) are fc-vector spaces, but not so in 2W(S * G). However note that we obtained
a very useful correspondence from (10.1):

There is a one-to-one correspondence between the set of irreducible representations of
G over k and the set of indecomposable projective S * G-modules.

(10.3) DEFINITION. As before let V be a vector space of dimension two and let G be a
finite subgroup of GL(2, k) acting on V in natural way. Suppose {Vo, Vi,.. . , V }̂ is the set
of all classes of non-isomorphic irreducible representations of G. For any representation
W of G over A;, we denote by multj(W) the dimension of HomjbG(K'» W) as a fc-vector
space. The McKay graph Mc(V, G) is defined to be an oriented graph whose vertices
are Vi (0 < i < d) and there are // arrows from Vi to Vj when /x = multf-(V ®jt Vj) ^ 0.

Let {POJ -PLJ • • • j Pd) De the set of classes of indecomposable projective S * G-modules
such that F{Vi) = Pi (0 < i < d) with the notation in (10.1). For any projective S * G-
module P we define an integer v%(P) (0 < % < d) to be the number of copies of P,-
appearing in the direct decomposition of P. We can prove:

(10.4) LEMMA. rrm\ti(V ®kVj) = i>i(F(V ®kVj)) (0<iJ<d).

PROOF: By definition V®kVj = E» V^ where m = nm\ti{V®kVj). Therefore it follows

Keeping the above notation, let us now study the subring R — SG of invariants. As in
the previous chapter denote by £(R) the category of CM modules over R. Recall that an
.R-module is an object in £(R) only when it is reflexive, because R is a normal domain
of dimension two, (1.5.3). In our case we have a very useful result to study the category.

(10.5) PROPOSITION. Leta,ddR(S) be the full subcategory offfl(R) whose objects are
isomorphic to R-summands of free S-modules. Then7 as a subcategory of$R(R), add#(5)
is equal to £(i£). In particular, we can identify the set of indecomposable CM modules
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over R and the set of indecomposable R-summands of S. Consequently R is of finite
representation type.

PROOF: Since S is reflexive as an iZ-module, it is clear that add^(5) C £(#). To see the

equality let M be a CM module over R. Note that the natural embedding of R into S is

a split monomorphism as an /^-module, since the iMiomomorphism <p : S —• R defined

by (p(s) = T£JTJ2{<T(S)\<T G G} gives a retraction. Applying HOIIIR(M*, ) to this, we

have a split monomorphism Hom^(M*, R) —• Hom^(M*, 5), where M* = Hom^(M, R).

Since M is a reflexive R-module, we have Hom#(M*, R) ~ M. On the other hand, since

Hom^(M*, S) is reflexive as an 5-module and since S is regular, we see that Hom^(M*, S)

is a free ^-module. We thus conclude that M is an .ft-summand of a free ^-module, hence

add#(5) = <£(#). Moreover if M is indecomposable, then M must be a summand of the

.R-module S by Krull-Schmidt theorem, and the second statement of the lemma follows. |

Next we investigate the relation between £(i£) and 5Dfl(Sr * G). Before this, we make

several remarks on pseudo-reflections in GL(2, k).

(10.6) DEFINITION. An element a in GL(2, k) is said to be a pseudo-reflection if

rank((7 - 1) < 1.

As to pseudo-reflections the following facts are basic.

(10.7) LEMMA. Lei G be a finite subgroup o/GL(2, Jb). Suppose that G acts naturally
on S = k{x,y} and that the invariant subring is R. Then,

(10.7.1) R is regular if and only if G is generated by pseudo-reflections.

(10.7.2) The ring extension R C S is unramified in codimension one if and only if G
has no pseudo-reflection except the identity. (By definition, R C S is unramified in
codimension one if, for any prime ideal ^3 of S with height < 1, (̂ 3 PI R)Sy = tySy.)

PROOF: We omit the proof of (10.7.1); see Bourbaki [17, §5, no. 5] for example.

To prove (10.7.2) let

T<p = {a G G\ <r(a) - a G <# for any a G 5}

for a prime ^3 of S with height < 1, and call it the inertia group at ^3. By Serre [59, I,

Proposition 20] it is known that

Therefore S is unramified in codimension one over R only when T<p = {1} for any ^3 of
height one. It is, thus, enough to show that a G G is a pseudo-reflection if and only if
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a G Ty for some P̂ of height one. If a G G is a pseudo- reflect ion then V has a basis
{x,y} with <r(x) = £z, <r(y) — V (C €  k). Then er acts trivially on S/xS, and hence
<T G T<p with 93 = xS. Conversely, assume a G T<p for some *$ of height one. Since S is
a unique factorization domain, we can find z G S with ^3 = z5. If z G n2, where n is the
maximal ideal of 5, then <r acts trivially on S/n2 and hence does so on V. Thus a = 1.
If z ^ n2, then, since the action of cr — 1 on n/zS -f n2 is null, we see that the rank of
(a — 1) on V is not more than one, and hence <r is a pseudo-reflection. |

Furthermore we have the following lemma.

(10.8) LEMMA. Keeping the above notation, let 6 : S * G -> End/*(S) 6e an R-algebra
mapping defined by

6(s<r)(t) = sa(t) (<r G G anrf s,* G 5)

7/" the extension R C S is unramified in codimension one, then 6 is an isomorphism.

PROOF: (i) Firstly we show that 8 is an isomorphism in the case when R = SG C S is a
separable extension.

By definition the extension R C S is separable if there is an element e = £ , x« 0 y, in
S ®R S so that

1 <8> a — a 0 l)e = 0 for any a £ S.

Note that the assumption of the lemma means that the extension Rp C Sp is separable
for each prime p of R of height < 1. In the separable case it can be seen that

(**) J2 Zi<r(yi) = |
(«r = 1 €  G),

In fact, from (*) we have £,- z,a (8) y; = £,• zt- <g> ay,- for any a G 5. Applying the automor-
phism 10(7 to this, we obtain J2i Xia<S>c(yi) — £,- Xi<g>cr(a)o~(yi). Letting ea = J2i ^ic(yi)
we thus have aea = c{a)ea for any a £ S. Hence ea = 0 if c ^ 1.

Now let A be an arbitrary element in End^(S'). Setting z = E,E<7 h(xi)<T(yi)(T €  S*G,
we obtain the equalities for any a £ S:

(6z)(a) =

= ME *<(E'(«»))) = *(E(E
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(We used (**) for the last equality.) We have thus shown 8(z) = h. Therefore it follows
that 8 is an epimorphism. Comparing the ranks of End/^(Sr) and S * G as ii-modules, we
conclude that 8 must be an isomorphism in this particular case.

(ii) Now we prove the lemma. Let K, L be the field of quotients of ii, S respectively.
Note that K C L is a Galois extension with Galois group G, in particular, it is separable.
Hence by (i) we know that the natural mapping 8 <S>R K : L * G —* End#(L) is an
isomorphism. Since we have the commutative diagram

S*G - ^ Endtf(S)
n n

it follows that 8 is a monomorphism. To see the lemma, it is thus enough to show that
8 <8>R Rp is an isomorphism for each prime p in R of height one, since both S * G and
End#(5) are reflexive ii-modules. However this is just what we have shown in (i), because
Rp C Sp is a separable extension. I

We now have a striking relation between CM modules over R and S * G-modules.

(10.9) PROPOSITION. (Auslander [6]) Keeping the above notation, assume G has no
pseudo-reflection but the identity. For an S*G-module M and for an S*G-homomorphism
f : M -+ N, let H{M) = MG and H(f) = f\Ma. Then the functor H yields the
equivalence of categories:

p(S*G)~C(R).

PROOF: (i) First we have to verify that MG is actually a CM module over R when M is
a projective S * G-module.

It is clear that MG is a direct summand of M as an i£-module. Since M is projective
over S * G, it is also a projective iS-module, hence it is 5-free. Therefore MG belongs to
add#(S) and our contention follows from (10.5).

(ii) Note that G acts on S * G as follows:

Then it is easy to see that the invariant part under this action is

We denote the #-submodule (S*G)G of S*G by S\. Note that Si ^ S as an ii-module.



McKay graphs 91

(iii) We show that a restriction mapping a : End$*£(5 * G) —• Endjj(Si) defined by
a( / ) = f\sx ( / G End5#<-(5 * G)) gives an isomorphism of jR-algebras.

To see this, define a sequence of algebra mappings:

S*G —y—+ (S*G)°*> —^ End5*G(S*G) - ^ - > EndR(Si),

by equalities:

0(00?) = *•* (£,*?€ S*G),

7(5(T) = a~1(s)a-1 {seS.cre G).

It is an easy exercise to see that ft and 7 are bijective and that the composition a • ft • 7 is
equal to 6 defined in (10.8), where we identify S\ with S as in (ii). It then follows from
(10.7.2) and from (10.8) that 8, hence a, is an isomorphism.

(iv) In general, let A C B be an extension of (noncommutative) rings where B is finite
as a left A-module. We denote by add^(J?) the category of left ^4-modules which are
^4-summands of free 5-modules. Then each object P in add^(B) has an exact sequence
of A-modules:

B(") i ! ^ d fl(") - i - P > 0,
where fij € End^i?) and the restriction of / onto Ker(h) = Im(/) is the identity map-
ping. Define a category P(End^(J5)), whose objects are square matrices / on End^(jB)
with the property f2 = / , and the morphisms between / and / ' are pairs (a, ft) of
j4-homomorphisms with the commutative diagram

4
/ /\ J

modulo the set {(/'-7, 7*/)| 7 € Hom^i?^), B^v ))}. Under these circumstances it is easy
to see that the category add^(£) is equivalent to P(End^(JB)). (Exercise: Prove this.
Note that the equivalence is given by Q : P(EndA{B)) -> addA(£); Q(f) = Coker(/).)

(v) With the notation in (iv) we note that &dds*G(S * G) = p(S * G). On the other
hand we know from (10.5) that £{R) = add#(5). Hence we have

€(R)  -
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Since End5+<-(5 * G) ~ End#(5) as an R-algebra by (iii), we obtain the equivalence of
categories £(R) — p(S*G) as required. We leave the reader to check that the equivalence
is actually given by the functor H in the lemma. |

Combining this with (10.2) we have the following

(10.10) COROLLARY. The composition H F of functors yields a one-to-one corre-
spondence between the set of classes of irreducible representations of G and the set of
classes of indecomposable CM modules over R.

Making use of this correspondence we will show that the AR quiver is the same as the
McKay graph. We arrange the notation first.

(10.11) NOTATION. In the rest of this chapter G C GL(2, Jfe) is supposed to have no
pseudo-reflections but the identity. Let {Vb, Vi,... , V }̂ be the set of nonisomorphic sim-
ple fcG-modules, where Vb is the trivial fcG-module k. Also we denote by {Po5 Pi>• • • , Pd}
the set of indecomposable projective S * G-modules with P, = F(Vi) (0 < i < d). We
define the permutations on these sets as follows:

r(Pi) = F(r(Vi)) (0 < i < d).

Note that r(Vi) ~ r(V-) <=> r(F,) ~ r{Pj) <=> i = j .
Let {1*0,1*1,... ,L<I} be the set of CM modules over R where Li = H(Pi) with the

notation in (10.9). Note that LQ = R. We also denote by r the permutation on this set
induced from r on the P,\ In other words,

r(Li) = H(r(Pi)) (0 < • < d).

(10.12) REMARK. With the above notation, r(Lo) is isomorphic to the canonical
module of R. In fact T(LQ) can be described as (S <8>k A2 V)G where the action of G on
{S®kA2V) hi given by <r(s®(vAw)) = <r(s)®det(<r)(vAw) (<r 6 G, 5 €  S and v, w €  V).
Therefore T{LQ) = {s £ S\ <r(s) — (l/det(<r))s for any a €  G}, and this is isomorphic to
the canonical module by Watanabe [64].

Writing the Koszul complex over S as

2

(10.13.1) 0 -> S ®k /\V -+ S ®kV -+ S ^ * ->0 ,
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we easily see that this is also an exact sequence of S * G-modules. Applying the functor
Vi to this, we obtain

2

(10.13.2) 0 -> S ®k (f\ V ®k V-) — S ®k {V ®k Vi)

which gives the minimal projective resolution of the S* G-module Vi. Using the notation
of (10.11), we hence have an exact sequence:

Now take the G-invariants of this sequence to get

(10.13.3) 0 — r(Li) — H • F{V ®k Vi) -> Li — V? — 0.

Note here that Vf* = k if i = 0 and V̂ G = 0 otherwise, because each Vi is a simple
A;G-module. Consequently the sequences (10.13.3) become

(10.13.4) 0 —> T(Z 0 ) —• #o - ^ £o —> & —> 0 (i = 0),

0 —> r(£ t) —• ^ - ^ Lt- —> 0 (• ^ 0),

where ^ = H F{V ®k Vi).

(10.13) PROPOSITION. For any i (0 < i < d), the sequences (10.13.4) satisfy the
following condition:

If L is a CM module over R and if f : L —+ Li is an R-homomorphism which is not a
split epimorphism, then there exists an R-homomorphism g : L —• Ei with f = pi • g.

In particular, if i ^ 0 then the sequence (10.13.4) is the AR sequence ending in Li.

PROOF: Recall the equivalence between p(S * G) and £(#) is given by the functor H in
(10.9). For a given / : L —* Li consider the corresponding diagram in p(S * G):

F{V®kVi) {Pi\ Pi

H~\L)

Since / is not a split epimorphism, we have Im(/) C Im(p;), hence it follows that
lm(H-l(f)) C lm(H-l(pi)). By this together with the fact that H~l(L) is a projective



94 Chapter 10

£ * G-module, we show there is an S*G-homomorphism g1 from H~l(L) into F(V <8>k Vi)
so that H~1(f) = H~1(pi) • g1. Letting g = H(g') we have / = pi • g as required. |

Now recall the definition of the AR quiver F for R. Vertices in T are the indecomposable
CM modules over R and hence they are L, (0 < i < d). By the above lemma, if
i ^ 0, then irr(jLj,Lj) is equal to the number of copies of Lj appearing in the direct
decomposition of Ei\ see (5.5). Even in the case when i = 0, the sequence (10.13.4)
has the same property as AR sequences, therefore we can verify the same equality as
above. By using the equivalence between p(S * G) and £(R), we thus have shown that
in(Lj,Li) = Vj{F(V &)* Vi)), which is equal to mult^V ®k Vi) by (10.4). This shows
that the map T —• Mc(V, G) sending [Li] to [Vi\ yields an isomorphism of graphs. We
therefore have proved:

(10.14) THEOREM. (Auslander [6]) If G C GL(2, k) has no pseudo-reflection but the
identity, then the invariant subring R = SG is always of finite representation type, and
the AR quiver T of R coincides with the McKay graph Mc(V, G).

We end this chapter by giving several examples of AR quivers.

(10.15) Important Examples.
Let £n be the primitive n-th root of unity in an algebraically closed field k of charac-

teristic 0. It is a classical result that any finite subgroup of SL(2, k) is conjugate to one
of the following groups (called Klein groups):
(An) Cyclic group of order n + 1;

+ 1 0

(Dn) Binary dihedral group of order 4(n — 2);

n
,C4 0

Binary tetrahedral group of order 24;

1 (C*

VUG* a
(E7) Binary octahedral group of order 48;

) '
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(Eg) Binary icosahedral group of order 120;

r _<. 1 [ C5 ~~ Cs C5 ~~ C5 A 1 / C5 "" C5 C5 ~~
v 5 \C5 — C5 Cs — C5 / v 5 \ 1 — Cs C5 "~ <

It was also proved by Klein that the invariant subrings by these groups are simple hyper-
surface singularities, i.e., SG ^ k{x, y, z}/(f) where / is one of the following polynomials
respectively in each case:

(An)

(Dn)

*2 + S,"+1 ( » > 1 ) ,

x3 + xy3 + z2,

(Es)

The AR quivers for these rings are computed as McKay graphs of the above group.
We exhibit them now. Each number attached to a vertex indicates the rank of the
corresponding CM module. When we regard them as McKay graphs, the numbers are
the degrees of irreducible representations.

(An)

(Dn)
[R]

1

[R]

2

tl
2 5^3 5^2

(E7)

[R]:

2
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3

(10.16) Examples of invariant subrings by cyclic groups.
Let G be a cyclic subgroup of GL(2, k). Then the McKay graph Mc(V, G) is easily

computed, therefore the AR quiver will be obtained.
Let R\ be a Veronese subring k{xn, xn~xy, xn~2y2,... ,yn} of degree n which is an

invariant part of k{x, y} by action of a cyclic group of order n. The AR quiver for R\ is
shown in Figure (10.16.1), where K denotes the class of the canonical module of R.

n r/N.-^ :*

Figure (10.16.1)

Figures (10.16.2) and (10.16.3) show the AR quivers for the ring R2

k{x5, x3y, xy2, j/5} and R3 = k{x10, x7y, x*y2, xy3, yw} respectively.

Figure (10.16.2)
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Figure (10.16.3)



Chapter 11. Two-dimensional CM rings of finite representation type

In the last chapter we showed that the AR quiver of an invariant subring of dimension
two is the same thing as the McKay graph of a finite group. One of the main purposes
here is to show that any CM ring of dimension two of finite representation type is a ring
of invariants by a finite group; see Theorem (11.4). Therefore all the finite AR quivers
for CM rings of dimension two are obtained as McKay graphs.

Throughout this chapter (R, tn, k) is an analytic normal local domain of dimension two
(so that it is CM) with k an algebraically closed field of characteristic 0 (or k = C ),
and we denote by Q the field of quotients of R. Let L be a finite Galois extension of Q
with Galois group G and let S be the integral closure of R in L. Then 5 is a local ring
which is module-finite over R. Denoting by n the maximal ideal of 5, we note S/n ~ k,

since k is algebraically closed. As before £(R) denotes the category of CM modules over
R and add^(5) is the category consisting of i2-summands of free 5-modules. Note that
all modules belonging to £(R) are reflexive and conversely any reflexive modules are in
€(R). Furthermore one can easily see that add#(S) is a (full) subcategory of €(R).  Also
denote by p(S * G) (resp. 9Jt(kG)) the category of projective left S * G-modules (resp.
left fcG-modules). The proofs of Lemma (10.1) and (10.9) can be easily imitated to yield
the following two lemmas. (The difference here is that S might not be regular. However
we did not use this in the proof of (10.1) and (10.9).)

(11.1) LEMMA. The functor F:?Bt(kG)-+p(S*G) defined by F(W) = W®kS (W €
dJl(kG)) gives a one-to-one correspondence between the sets of classes of objects in these
two categories.

(11.2) LEMMA. Suppose that the ring extension R C S is unramified in codimension
one. Then the functor H : p(S * G) -> add^S) ; H(M) = MG (M €  p(S * G)) is an
equivalence of categories.

Exercise. Give complete proofs of these lemmas.
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The following lemma due to Mumford will be necessary in the proof of our theorem.

(11.3) LEMMA. Keeping the notation as above, we assume R satisfies the following
condition:
(11.3.1) For any finite Galois extension L of Q, if the integral closure S of R in L
is unramified in codimension one over R, then S = R. That is, R has no nontrivial
extensions unramified in codimension one.
Then R is regular, i.e. R ~ k{x, y) for some x and y.

For the proof we refer the reader to Mumford [49].
We are now able to prove the theorem. We should mention that the following algebraic

proof is due to Auslander [6], and there is another, more geometric, proof given by Esnault
[27].

(11.4) THEOREM. With the above notation, suppose R is of finite representation type.
Then there exists a finite Galois extension ft of Q with Galois group G so that the integral
closure S of R in Q is isomorpkic to k{x,y} on which G acts linearly, and R = SG.

PROOF: Consider the following set of field extensions of Q in some fixed algebraic closure
of Q:

A = {L\ L is a finite extension of the field Q such that the integral closure SL of

R in L is unramified in codimension one over R}.

Setting Q, = \J{L €  A}, the smallest field containing all L in A, we can easily check that
Q is a Galois extension of Q. We will show that

(11.4.1) Q is a finite extension of Q.

For, if [Q : Q] = oo, then there is a series of finite Galois extensions of Q:

Q C Lx C L2 C . . . C Ln C Ln+i C . C Q .

Let Gn be the Galois group of the extension Q C Ln and let Sn be the integral closure
of R in Ln. Since Sn is a direct summand of Sn+\ as an Sn-module, we have a sequence
of full subcategories of (£:

addit(51) C add*(S2) C . . . C add*(Sn) C . . . C t(R)

The assumption that £(R) has only a finite number of indecomposable objects implies
that, for n large enough, add#(Sn) and add#(5n+i) have the same number of indecom-
posable modules. It then turns out from (11.1) and (11.2) that the number of simple
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A:Gn-modules is equal to that of simple fcGn-|-i-modules. In particular Gn and Gn+i have
the same number of conjugacy classes. On the other hand, since Ln is an intermediate
field of Q C £n+i, we have a normal subgroup H of Gn+i with Gn ~ Gn+i/H. Com-
paring the number of conjugacy classes of Gn and Gn+i, we conclude that Gn = Gn+i,
hence Ln = Ln+\. This contradicts the choice of Ln, and (11.4.1) follows.

Now let S be the integral closure of R in ft and G the Galois group of Q C Ct. By
(11.4.1) G is a finite group and R = SG. Note that by definition S has no ring extension
unramified in codimension one over S. It thus follows from (11.3) that S = k{x,y} for
some x and y. It is well-known, and easy to see, that the action of G on S can be
linearized, that is, after changing variables, G may act on the vector space kx 0 ky. This
completes the proof of the theorem. |

By this theorem we see that two-dimensional CM rings of finite representation type are
the ones discussed in the previous chapter.

Next we shall briefly explain how to construct the AR quivers for general normal do-
mains of dimension two.

(11.5) DEFINITION. Let (R, m,k) be an analytic normal local domain of dimension
two. By (1.11) there exists a canonical module KR over R. By definition KR is a module
with the property Ext^(fc, KR) ^ &, or equivalently Extern, KR) ^ k. This means that
there is a unique nonsplit exact sequence:

(11.5.1) 0-^KR—>E—+m—.0.

We call this the fundamental sequence of R. Here the module E appearing in the
middle term is also unique up to isomorphism, which is called the fundamental module
of R.

(11.6) LEMMA. The fundamental module E is a reflexive module of rank 2, which
is generated by at most T(R) + emb(i2) elements, where i(R) is the Cohen-Macaulay
type of R and emb(i^) denotes the embedding dimension of R. Furthermore there is an
isomorphism of R-modules:

PROOF: Applying the functor HOITIR( ,KR) to the fundamental sequence, we get the

exact sequence:

-> HomR(KR, KR) A Extern, KR) -> toAl
R(E, KR) - VxiR{KR, KR)

- Extern, KR) -> Extk(£, KR)
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where a is surjective by definition and Extl
R(Kn, KR) = Extern, KR) =

Ext2
R(KR, KR) = 0 by the local duality theorem. Hence we obtain Ext^E, KR) =

Ext^(£, KR) = 0 and this implies that depth^) = 2 and that E lies in t(R).
Taking the divisor classes in the sense of Bourbaki (or the first Chern classes) attached

to the modules in the fundamental sequence, we obtain the equality c(E) = C(KR) in
the divisor class group of R. (See Bourbaki [16,§7].) Then by definition it follows that
c(A2 E) = C(KR); cf. [16, Exercise 12 of §4]. This gives the isomorphism in the lemma.

By noting that T(R) = dim.k(KR ®R k) and emb(i?) = diirijt(tn ®R &), the remaining
part of the lemma follows from the fundamental sequence (11.5.1). |

(11.7) COROLLARY. Assume that R is Gorenstein. Then R is a regular local ring if
and only if the fundamental module E has a free direct summand.

PROOF: If R is regular, then the fundamental sequence is given by

0 —> R —• R? —• m —• 0.

In particular, E ~ R2. Conversely assume that E ~ R ® a for some ideal a. Since R is
Gorenstein so that KR ~ R, it then follows from (11.6) that R ~ (A2E)** ~ a** ~ a,
hence E ~ R2. This together with the exact sequence 0—> R ^> E —»tn—>0 shows that
R is regular. |

(11.8) Exam-pie. Let V be a fc-vector space of dimension two with basis {x,y} and let
G be a finite subgroup of GL(V). Then we have a natural action of G on the regular
local ring S = k{x, y}. The fundamental module of the invariant subring R = S will be
obtained as follows: Define the action of G on the free module S <8>jb V of rank 2 by

= <T(S) 0 <r(v) (<r eG,s €  S,v €  V).

Denote by E the invariant part of this action:

Then E is the fundamental module of R. Indeed, we know from (10.12) and (10.13) that
the sequence (10.13.4), when i = 0, is the fundamental sequence of R.

(11.9) Exercise. Prove that if R is a hypersurface, then the fundamental module E is
isomorphic to the third syzygy of k. See Yoshino-Kawamoto [68] for more details.

Considering m c i ? i n the fundamental sequence we rewrite (11.5.1) as follows:

<T : 0 —•> KR -U E -£+ R.
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Then the sequence has the property of an AR sequence:

(11.10) LEMMA.
(11.10.1) Let f : M —> R be an R-homomorphism of a CM module M into R which is
not a split epimorphism, then there is an R-homomorphism g : M —• E with f = p • g.
(11.10.2) If M is a CM module over R that is not free, then the following is exact:

: 0 — Hom*(M*, KR) HomlK>9) Hom*(M*, E) Hom^^ M — 0.

PROOF: (11.10.1): The mapping / yields Ext^(/, KR) : Extern, KR)

Denoting r = Ext#(/, KR)(a')1 we have a commutative diagram

T : 0 > KR

<r: 0

with exact rows, where the right square is a pull-back diagram. Since Ext^(M, KR) = 0
by the local duality theorem, it follows that r — 0, hence the sequence r splits, which
just means that there is g : M —* E with / = p • g.

(11.10.2): We may assume that M is indecomposable. Clearly it suffices to show that
Hornft(M*,p) is an epimorphism. To do this, let / be an element of Hom#(M*, R) ^ M.

Note that / is not a split epimorphism. For otherwise, M* would contain R as a direct
summand, thus M ~ R, a contradiction. Therefore by (11.10.1) there is an element g in
JIomR(M*}E) with / = Hom(M*,p)(^), giving the required result. |

(11.11) THEOREM. (Auslander [6]) If M is an indecomposable CM module over R
which is not free, then the sequence a{M) in (11.10.2) is the AR sequence ending in M.

PROOF: We divide the proof into several steps.

(i) Since M is a torsion free module, we can define the trace of an element / in

End#(Af). More precisely, trace(/) is defined to be the trace of a linear mapping

/ ®R Q €  Endg(M ®R Q) where Q is the field of quotients of R. It is easily seen

that trace(/) is an element of Q that is integral over A, for M is finitely generated.

Because R is integrally closed, we have trace(/) €  R. We thus obtain a mapping:

trace : EndR{M) -> R

Note that trace(ljvf) = rank(M), in particular, the trace map is onto. Also note that
if trace(/) is a unit in R, then f is an automorphism on M. To see this, let L be a
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sufficiently large finite field extension of Q so that L contains the all eigenvalues ctt (1 <
i < n) of the linear mapping /<£)#£ and let t;,* (1 < * < n) be eigenvectors with eigenvalue
&i. We may take each v» from M <8># S where S is the integral closure of R in L. Note
that the a; are in 5, since they are integral over R. Also note that S is a local ring. Let
n be the maximal ideal of S; then because v% ^ 0, one can take a sufficiently large integer
m such that each V{ is not contained in nm(M (S># S). Suppose / is not an isomorphism.
Then, since M is indecomposable, / is in the radical of End#(M). Thus fr(M) C tnM
for some integer r, hence (/ ®R S)r(M ®# S) C n(M  <8>R 5). It follows from this that
a^mVi = (/ (g> S)rm(vi) €  nm(M 0 S), therefore each a» must be a nonunit in S, and so
is £,• a». Hence we have trace(/) = ^t- a,- €  n fl /^ = m, a contradiction,

(ii) There is a natural isomorphism of functors on

Hom#(Hom*(M, N), ) ^ Hom^AT, HomH(M*, )).

In fact, it is known that there are natural homomorphims

H o m ^ H o m ^ M , N), ) - ^ EomR(N ®R M*, ) M  RomR(N, KomR(M*y )),

where 0 is always an isomorphism. To see that a is an isomorphism, it is sufficient to
show that the localized mapping ap are isomorphisms for all primes p of height one, since
both modules are reflexive. However this is trivial since HOUIR(M) N)p ~ (N ®# M*)p.

(iii) We shall show that <r(M) is a nonsplit sequence in the theorem. Suppose not. Then
Hom#(M, Hom.R(M*, p)) would be an epimorphism, hence so would Hom.ft(End#(M),p) :
Hom#(End#(M), E) —• Honift(End#(M), R) by (ii). However the trace mapping cannot
be lifted to an element in Hom#(End#(M), E)y because trace €  Hom/e(End#(M), R) is
a surjective mapping. This shows that <r(M) is not split.

(iv) Suppose we are given a CM module X and a homomorphism / : X —• M which
is not a split epimorphism. We want to show that there is a homomorphism g : X —>
Hom/i(M*, E) such that Hom^(M*,p) • g = / . If this is true for any X and for any / ,
then cr(M) is an AR sequence by (2.9). As in (ii) there is a commutative diagram:

Hom(X,Hom(M*,p))
KomR(X,EomR(M*,E)) > Homfi(X, Hom^M*, R))

Hom(Hom(M,A'),p)

K{K{MX), R)

We denote by / ' the element in Homij(Hom/l(M, X), R) with f(f') = / . We claim that / '
is not a split epimorphism. For otherwise, there would be an element g in Hom^(M, X)
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such that f'(g) = 1, which exactly says that trace(/,gr) = 1. Then by (i), fg would be an
automorphism on M. This contradicts / not being a split epimorphism, and so / ' is not
a split epimorphism. Then by (11.10.1) there is an element g1 in Hom^(Hom/^(M, X), E)
with Homj^Hom/^M, X),p)(g') = /'. Denoting by g the element corresponding to g' in
HomjR(X, Homjft(M*, E)), we have Hom#(M*,p) - g = f as required. |

As an application of (11.11) we consider the indecomposability of fundamental modules.
Let G, S and R be as in (11.8). The fundamental module E of R is given in (11.8).

Furthermore assume G is a cyclic group. Then the action of G on V is diagonalized after
a suitable choice of basis of V. So we have E = (Sx)G 0 (Sy)G. Thus the fundamental
module is decomposable in this case. We can prove the converse is true as well by using
Theorem (11.11).

(11.12) THEOREM. (Yoshino-Kawamoto [68]) Let R be an analytic normal local do-
main of dimension two with residue field k of characteristic 0. Then the following two
conditions are equivalent:
(11.12.1) The fundamental module E of R is decomposable.
(11.12.2) R is an invariant subring of a regular local ring S by a cyclic group G (that is,
R is a cyclic quotient singularity).

PROOF: It suffices to prove (11.12.1) => (11.12.2). So let E ~ a 0 b be a decomposition
of the fundamental module of R and let F° be the connected component of the AR quiver
F that contains the class of R. First of all we prove the following claim:

(11.12.3) Under the assumption in (11.12.1) any class of module in F° has rank 1.

For this, let M be in F°. By definition there is a chain of edges in F : R — MQ — M\ —
M2 - . . . - Afn = M, where each edge "-" indicates either "-»" or "<-" in F. We prove by
induction on the length n of this chain that M has rank 1. If n = 0, then there is nothing
to prove, for M ~ R. Assume n > 0. There might be two possibilities (1) Mn_i <— Mn

and (2) Mn-\ —• Mn in F. In the first case, Mn is a direct summand of Homie(M*_1, £) ,
hence is isomorphic to either Hom^(M*_1, a) or Hom^(M*_1, b), both of which are of
rank 1 by the induction hypothesis. In the second case, Mn_i is isomorphic to one of
Honift(M*, a) and Honift(M*, b). Since rank(Mn_i) = 1 by the induction hypothesis,
Mn has also rank 1, so proving (11.12.3).

By virtue of (11.12.3) and Theorem (6.2) one sees that C(R) is of finite representation
type. Then it is concluded from (11.4) that R is a quotient singularity, that is, there
are S — k{x,y} and a finite subgroup G of GL(2, k) such that R = SG. Here, by
usual argument using (10.7.1), we may assume that G contains no pseudo-reflections. It
remains to prove that G is a cyclic group. Letting F be the S * G-module Sx 0 Sy,
we showed in (11.8) that the fundamental module E of R is given by FG. Note from
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(11.2) that there is a natural isomorphism of algebras Ends*G(F) — End#(i£). Since
E is decomposable, there is a nontrivial idempotent e in Endjt(E). Considering e as an
idempotent in EndS*G{F) by the above isomorphism, F is decomposed into the nontrivial
sum e(F) 0 (1 — e)(F) as an S * G-module, both summands of which must be free of
rank one over S. Thus there is A = (" ^) in GL(2, k) such that e(F) = S(ax + fiy) and
(1 — e)(F) = S(jx + 6y). After changing variables by the linear transformation A, we may
assume that e(F) = Sx and (1 — e)(F) — Sy. Therefore the action of G is diagonalized.
Let % be the character of G given by x(#) = a for g = (£ b) €  G. Since G contains no
pseudo-reflections, this x gives an injective homomorphism from G into k*. Thus G is a
subgroup of k*^ hence it is cyclic and the proof of the theorem is completed. |

(11.13) REMARK. The above proof shows how to describe the AR quiver for a cyclic
quotient singularity. Actually it follows from (11.12.3) and (6.2) that any indecomposable
CM module has rank one, so there is a one-to-one correspondence between the elements
in the class group C\(R) of R and the vertices in the AR quiver T for R. Suppose the
fundamental module E is decomposed as the sum of ideals a and b, and denote by a, 6
the class of a, b in Cl(R). Then the AR quiver T is figured as follows:

3a-1-6 ^2a a-b ^^~2b

2a+ 6 a -b ^ a - 26
(11.13.1) 2a+ 26 ^ - - ^ + 6 " ^ 0 " ^ a - 6

^ ^ - - - " ^ 6 C j - - - " ^ -« - ^ - - ^ - 2 a - 6

where na + m6 denotes the ideal class of ((anbm)~l)~l in Cl(-ft). Since this diagram must
be finite by (11.12), some vertices in (11.13.1) should be identified. For example, if a has
order n in Cl(.ft), then 0 = na = 2na = . . . so on. The AR quiver for R is thus obtained
from the graph (11.13.1) by dividing it by the relations in the divisor class group.
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Chapter 12. Knorrer's periodicity

In Chapter 8 we showed that a local ring of hypersurface is a simple singularity when
it is of finite representation type. Conversely simple singularities of dimension 1 and
2 are of finite representation type as we have shown in Chapter 9 and 10 respectively.
One of our aims here is to show that the latter is true as well in arbitrary dimension,
so that, for hypersurfaces, the notion of simple singularity is equivalent to that of finite
representation type.

Throughout this chapter k is an algebraically closed field of characieristic 0 and S is
the power series ring over k in d -f- 1 variables:

S = k{x,y,Z2,zs,... ,zd}.

Set R = S/(f) where / is one of the following polynomials:

(An) x2 + yn+l + z2 + z2 + ... + z2
d ( n > l ) ,

(Dn) x2y + yn~l + z\ + z\ + ... + z\ („ > 4),
(E6) x3 + y4 + z\ + z\ + ... + z\,
(E7) x3 + xy3 + z\ + z\ + ... + z\,
(Es) x3 + y* + z2 + z2 + ... + zl

Recall that these are equations of simple singularities; (8.8). We want to show below that
R is of finite representation type. Since we have already shown this for the cases when
d = 1 and 2, the main idea here is to reduce the problem to one in lower dimension. For
this purpose, consider new rings as follows:

(12.1.1) Sl = S{u) = k{x, y, z2, z3>... , zdj ti},

t * 2 ) ,
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with u a new variable. Note that, if R has one of the types (̂ 4), (D) and (E), then R^ has
the same type as R. Also note that the dimension R^ is (d + 1) while R has dimension
d. Clearly we have R = R^/(u), so that any R-module can be regarded as an i^-module.
As before we shall denote by £(R) and £(i£") the categories of CM modules over R and
R^ respectively.

(12.1) DEFINITION. Let N be in £(#&). We define an fl-module E(N) by putting
E(N) = N/uN. Since depth(tf/tiW) = depth(AT) - 1 = dim(fl), we have E(N) G C(R).
Similarly for a morphism <p in <£(#") we put S(<p) = (p <g) R^/(u). Thus we have defined
the functor S from ^(i*11) to £(#).

Note that, by (12.1.1), S is a subring of R$ on which R% is generated by 1 and w, i.e.
5 C HP is a Noetherian normalization. Hence an i^-module N is CM if and only if it is
free as an S-module, (1.9). In other words, CM i^-modules are the free 5-modules with
i^-module structure, or equivalently, the free S-modules on which u acts. Notice that
the action of u must satisfy u2 = —/. Therefore there is a one-to-one correspondence
between the set of CM modules over R^ and .the set of square matrices cp with entries in S
and with the property <p2 = —/ • I. Clearly isomorphic modules correspond to equivalent
matrices, where we say that matrices <p and V> are equivalent if a<pa~l = V> for some
invertible matrix a.

First of all we remark:

(12.2) LEMMA. Lei N be a CM module over R^ and lei (p be an (n x n)-mairix over
S given by ihe adion of u on N. Then (uln — (p}uln H- <p) lies in MFs$(f + v?) wiih
Coker(w/n — y>, uln + (p) = N. Similarly (<p, —(p) is in MF5(/) such ihai Coker(<p, — <p) =
E(N).

PROOF: It is easy to check that (p • (—(p) = (—<p) • <p = f • In
 and (uln — (p) • (uln + (p) =

(uln -f- <p) - (uln — <p) = (/ -f- v?) - In. Hence they give matrix factorizations of / and f -\-v?

respectively. To prove the lemma we have to show that N ~ CoVex{R}^ u / ^ R}^)

and E(N) ~ Coker(JR(n) -^ R^). For the first equality, let N1 be the module of the right

hand side and let {ci, e2, . . . , en} be a free base of R^n\ Then note that, as an 5-module,

.#"(") has a free base {ei ,e 2 , . . . ,e n , wei, we2,... , uen}. Since (w/-y?)(e,) = -y>(e

and (ul — <p)(uei) = /e,- — tty?(e,), we have

as an S-module, so that Nl is an S-free module having the image of {ei, e 2 , . . . , en} as a
base, on which u acts as the matrix <p. Hence by the choice of (p, Nf is isomorphic to N
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as an .ft'-module. This proves the first equality. The second equality is immediate from
the first. In fact,

E(N) = N®RtR~ CokeiiR1^ ^ R1^) ®̂  R ~

Recall that, for a module M in £(R), syz^(M) is the reduced first syzygy of M as an
i^-module, i.e. there is an exact sequence

0 —- syz^(M) © F - ^ G — > M ^ 0,

where F and G are free over Rl, cf. (1.15). From this we have

depth(syz^(M)) = depth(M) + 1 = dim(R) + 1 = dim(R*),

in particular, syz^tt(M) is a CM module over RK We can prove the following:

(12.3) LEMMA. Lei M be in C(R) and lei (<p,j>) be ihe mairix fadorizaiion of f wiih
M = Coker(y?, V>). Suppose ihai M has no free summands and ihai (<p,i>) is chosen io

be reduced. Then (( \. ~ | , [ ^ r " ]) is an elemeni in MFst(f + u2) such ihai
\ul (p J \-uI tp J

PROOF: Since R = R^/(w), we have a commutative diagram:

0 0 0

! I 1
RW —^-* RW -^—* RW • M • 0

(12.3.1) | } |

Ri(n) * } Rt(n) * ) Rl(n)

u] n] u]

where the columns and the top row are exact, while the second and the third rows are
not even complexes. However, by chasing the diagram, we get a free presentation of M
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as an jR"-module:

-ul

In fact, it is easy from (12.3.1) to see that there is an exact sequence R^2n) (v?47) #Kn) ->

M - • 0. Assume that f ** j is in ( iJ^ty2) with y>(a) + w/9 = 0. Then <p(a mod («)) =

<p(a) mod (w) = 0, hence by (12.3.1) there are 7 and 6 in R^ such that a = VKT) — uS.
From this we have up = —(ptp(y) + (p(u8) = u2j + w<p(£), since y>̂  = / / = —v?I.

Thus /? = W7 + y>(6), so that J = r ~"W I I T I- T n i s proves the exactness of
\P J \uI <P J \° J

(12.3.2). We therefore have s y z ^ ( M ) 2^ Coker I J u p to free s u m m a n d s . On

the o ther hand , as t he pair of matr ices ( I T I , I r , ) i s a reduced m a t r i x
\ul <p J \-uI V /

factorization of f + u2, this matrix factorization must correspond to syz^tt(M) by (7.7). |

The above lemmas amount to showing the following:
(12.4) PROPOSITION. Lei M €  €(R) and lei N € C(Rl). Suppose M has no free
summands. Then

(12.4.1) H(syZyM)) ~ M

(12.4.2) syz^ZiN)) ~ N © syz^N).

PROOF: (12.4.1): Let (y>,rj>) be a reduced matrix factorization in MFs(f) with
Coker(y>,V0 = M. Then we know from the previous lemma that syz^fl(M) =

CokerM I , I r , )). Hence we have isomorphisms
K\ul <p J \-uI $ ) '

- Coker(

(12.4.2): Let <p be the matrix on S defined as in (12.2). Then (p,-y>) is in MF5(/)
with Coker(v?, -y>) = E(N) by (12.2). Hence it follows from (12.3) that syz^(H(M)) =
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Coker( ( 9
T

 Ul | , ( ^ r
 W / | ) . Here note thatv \ ul (p J \-uI -<pJ

2 Vl - l J U ^ V ) \ l -l)~\-ul-<p 0 J

Hence the above becomes

syzl
Rt(Z(N)) ~ Coker(uJ - <p, «/ -f y?) ® Coker(uJ + <p, «/ - <p) ~

by (12.2). |

Now we are ready to prove the main result of this chapter.

(12.5) THEOREM. (Knorrer [44]) Rl is of finite representation type if and only if R
is.

Taking into account (9.3) and (10.15) together with this theorem, we have a striking
result due to Knorrer.

(12.6) COROLLARY. Simple singularities of any dimension are of finite representation
type.

PROOF OF THE THEOREM: Let R be of finite representation type, and suppose that

{Mi,M2,... ,Mm} is the complete set of nonisomorphic indecomposable CM modules

over R. If N is an object in <L(R}), then E(N) lies in <£(#) by (12.1), hence we may write

E(N) = ZiM$ni). Then by (12.4.2), E,syz^(Mt-)(
n») ~ syzl

a(E(N)) ~N®syzlRt(N) as
an .fttt-module. If N is indecomposable, then this implies that N is isomorphic to a direct

summand of some syz^jj(Mi), hence such classes of N are finite.

Conversely suppose that R* is of finite representation type and that {N\y A^2,... , Nn}

is the complete set of nonisomorphic indecomposable CM modules over RK Given an

indecomposable CM module M over R, we know that syz^(M) is in C(i^"), hence we may

write syz^(M) ~ £ i N^m). If M is not free, then by (12.4.1) we see that £ , S(iVt-)
(mi) ^

S(syz^tt(M)) ~ M 0 syz^(M). Therefore M is a summand of some £(JV,). Hence the

classes of nonfree indecomposable CM modules over R are finite. |

(12.7) REMARK. By this proof we get a simple way to construct CM modules over
R^ from those on R. Let the ring R and all indecomposable CM modules {M,} over R

be given. Then one obtains all indecomposable, non-free modules over R$ as summands
of syz^B(Mt). Here note that each syz^8(Mt) is decomposed into at most two modules,
since S(syzLj(M,-)) has only two direct summands by (12.4).

However it is often difficult to perform the actual computation along this line. The

situation will be better if we take the ((-operation twice.
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(12.8) DEFINITION. According to (12.1.1) we define:

where u and v are variables on S. Let (<p, V>) be in MFs(/). Then define a pair of matrices
over S{u, v} by

where ( = « + >/—lv and r] = u — y/—lv. It is immediate that fi(<p, qfr) is a matrix
factorization of / 4- u2 + v2, and thus

For a morphism (a, /?) : (<£>, V>) —• (<£>', ^') in MFs(f), we define ^(a, /?) to be a morphism

in MF5|U,v}(/ + u2 + ^2)- ^ i*3 quite elementary to show that f£(a, ^) is well-defined and
that we have a functor Q : MFs(f) -> MFS{u,v}(f + ^ + v2)«

If (y>, V>) is a reduced matrix factorization, then Q(<p, V?) is also reduced. Similarly,
ft(/, 1) and Q(l, / ) are direct sums of (/ + «2 + V2, 1) and (1, / 4- u2 + v2). Hence we can
define a functor:

BMEs(/) — RM£5{Ul(;}(/ + «2 +1;2),
which we also denote by Q, cf. (7.3). Thus, by virtue of (7.4), we have a functor

which is also denoted by Q.
Note that, for a reduced matrix factorization (<p, %ji) in RMEs(/),

in C(ii«l). Moreover, by (7.7) and (12.8.1), we have

We note the following:
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(12.9)

TI^l^A T4t(A B \ (A' B'\\ I *• / t(<P £\ O> I
LEMMA. Let ( , ( . r,t ]) oe a morphism from (I ,

\C JJJ \C JJ J \r) —ipj \rj —<p
to {y ii ) A i])in MF5{«,v}(^ + w2 + V2)- Assume that all the entries i

A1 are in the ideal (£,TJ)S{UJV}} then the following extension splits:

1>' (, A! B1 \
rj -iff C1 D1

v ~i

of. (7.8).

PROOF: Since we can write A' = A[£ + Af
2r}, applying an elementary transformation

of matrices, we may assume that A' = 0. By the definition of morphisms of matrix
factorizations, we have:

<pV ( W O B'\ (A B
-V-'AC" D') \C D

\C D')\r, -v) -{r, -

In particular,

(«•)

(in)

r,B' = 4>'A + £C

f C' = A(f + t)B

Multiplying (i) by <p' from the left and using (p'rj)1 = fl, we get r}<plB' = jA 4- £<p'C.

Since {/,£, rj} is a regular sequence on 5{w, v} , we may write

(iv) A = tP + VQ,

for some matrices P, Q on 5{u,v}. Substitute (iv) into (i) to get

and thus there is a matrix P1 such that

B1 - xl>'Q = ^ = TJP'.
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Similarly we subsitute (iv) into (ii) and deduce the existence of a matrix Q1 on 5{u, v}
with

Then we have the equality of matrices:

n \
1 -P -Q1

£ 0 B1 \
-<p' C D'

where

and

1 -p'
1

I

V>' £ 0 E \
rj -<p' F G

9 i
v -1

= 0, F = CI -P<p-Qlrj = 0,

= D1 - A

Since
<p'B' = 0 by (Hi)

and since £ is a nonzero divisor on S{u, v}, we see that G = 0 and thus the extension is
equivalent to the split one. |

(12.10) THEOREM. (Knorrer [44]) The functor Q defined in (12.8) gives the equiva-
lence of categories:

PROOF: First of all we show that Q is fully faithful. To do this, take any objects (<p, V>)>
(<p',V') in RMF5(/). Putting M = Coker(y?,y>) and M1 = Coker^', V>')> we consider a
homomorphism of Abelian groups induced by Q:

p :

We have to show that p is bijective.
Considering the exact sequence 0 —* syz^(M')

R-module, we see that the sequence
M1 -^ 0 with F a free

Homfl(M, F) —> KomR(M, M') 1) —> 0
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is exact because Ext#(M, R) = 0. Then it is clear from the definition of Horn in (3.7)

that there is an ^-isomorphism

fi : Hom^M, Af') -> Extl
R(M, syz^ M1).

The mapping fj, is realized as follows: For any h €  Hom#(M, M1) it can be written as

Coker(a,/?) for some morphism (a,/?) : (<p, VO —> (<p', V>')- Then fi(h) corresponds to the

extension of M by syz^ M' which is given by the matrix I I; see (7.8). Likewise,

we have an R^-isomorphism

and we see that, for any h = Coker(o:J/?) in Homjff(M< M'), vp(h) corresponds to the

extension

(12.10.1) E =

(if I P
0

V

0 >

a

€
— \jj)

Now we prove that p is bijective. Let h = Coker(a, /?) be in Hom^(MT Ml) and suppose
that p(h) = 0. Then the extension E in (12.10.1) is split, or equivalently, there are
matrices A, B on S{u, v} with

(i "H ?)•
V>' £ 0 0

TJ -<p' 0 0

0 0 v? £

, 0 0 rj -i>.

Substituting u = v = 0, we see that this equation becomes f I 0 I ^ , \ —
\ 0 (pJ \ 0 — V>/

( r ) ® (^ ) ® (v̂ ) © (V0> hence that the extension \ is also split. Thus fi(h) = 0
V ^ ¥)

and hence /i = 0. This shows the injectivity of p.
(A B\ (A1 B'\

To prove the surjectivity, take any element h = Coker( , , . I) in
\C DJ \C D J

Homiljjj|(Q(M),n(Af/)). Letting Ao = A\u=v=o and A!Q = Af\u=v=o, we see from.y
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so that (AOJAQ) is a morphism of matrix factorizations (<p, rp) —• (<p', ^ ' ) . Let a =
Coker(j4o, Al

0) €  Hom^(M, M1). It is then immediately clear that

B \ (A'-A'o B'

and that i/(h — p(a)) is the extension

\

A' — Ao

a
¥>
V

B \
D'-Ao

i
-v- )

Since any entries in A'—AQ are in (£, rj)S{u, v}, we conclude from (12.9) that i/(h—p(a)) =
0. Therefore h = p(a), proving that p is surjective. Thus we have shown that the functor
ft is fully faithful.

It remains to be shown that Q gives a surjective mapping onto the set of objects
of ft(R^). To do this, it is sufficient to prove that any indecomposable object N in

has the form tt(M) for some M £ £(#) . Note that N is a direct surrimand of
syzJ^(M)) for some indecomposable nonfree CM module M over R. (Use Remark

(12.7) twice.) If (y>, xj)) is the matrix factorization of / corresponding to M, then we
see by using (12.3) twice that the matrix factorization of / -f u2 + v2 corresponding to

is s i v e n bv

( (p ul
—ul \j)
vl 0

< 0 vl

ion shows

V
0

-vl
0

1>
ul

that

-ip

0

0

0 \
-vl
-ul

/ %j)

ul
-vl

9 ) \ 0

this is equvalent

0
0
cp

Tf

0 \ {<p
0 V

0

to

t
-4
0

0

—ul

(p

0
-vl

the

0

; 0

1>
V

vl 0
0 vl

<p ul

-ul V

following rr

0 \
0

-(pj

Hence we have an isomorphism of iJ^-modules:
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Therefore TV is a direct summand of this module, hence of Q(M) or Q(syz^ M). In either
case N is in the image of Q, and the proof is finished. |

By the equivalence in Theorem (12.10) we can deduce various properties of CM modules
on Rll from those on R. For example we have:

(12.11) COROLLARY. Let M and N be non-free indecomposable CM modules over R
and let g be an R-homomorphism from M to N. Then;
(12.11.1) Q(M) is an indecomposable R^-module.

(12.11.2) g is a split monomorphism (resp. a split epimorphism) if and only iffl(g) is a
split monomorphism (resp. a split epimorphism).
(12.11.3) g is an irreducible morphism from M to N if and only ifCl(g) is an irreducible
morphism from Q(M) to Q(N).

PROOF: (12.11.1) : By the equivalence of categories in (12.10), Q(M) is indecompos-
able as an object in £(R^). Therefore if tt(M) is decomposable as an i^-module, the
only possibility is that Q(M) has a free summand. However this is not the case, since
the matrix factorization Q(y>, r/>) is reduced if (<p, rf>) is the reduced matrix factorization
corresponding to M; cf. (7.5.1).

(12.11.2): We prove this only for the case of split monomorphisms.
If g is a split monomorphism, then it is obvious that 17(g) is also a split monomor-
phism. Suppose £l(g) is a split monomorphism. Then there is a homomorphism
7T €  Homiflt8(Q(7V),n(M)) with TT • Q(g) = l a ( M ) - It follows from (12.10) that there
is an h €  Homjj(iV, M) such that the image of Q(h) — IT in Hom^tj(Q(i\T)T Q(M)) is triv-
ial. It then turns out that £l(h • g — 1M) has a trivial image in EndR^(Q(M)). and hence
h - g = 1 M as an element of End^(M). Since Endj^M) is local and since Endjg(M) is a
homomorphic image of End#(M), we see that h • g is an automorphism of M and hence
g is a split monomorphism.

(12.11.3): Suppose g is irreducible and that we are given a commutative diagram in

Q(N)

Q

Then by (12.10) we have a CM module L over R and h €  H o m A ( M , L), k €  RomR(L, N)

with n = Q(h) in H o m ^ j M M ) , Q) and v = U(k) in H o m ^ f Q . Q{N)). Since g - k h

is trivial as an element of Hom/j(M, TV), there are a free i2-module F , a €  H o m ^ ( M , F)

and b €  Hom^(F, N) such that <7 = A;-/i + 6 - a a s a n element of Hom^(M, N). Because

g is irreducible, this shows that either I I is a split monomorphism or (fc, b) is a split

w
epimorphism. Note that neither a nor 6 are split morphisms, since M and N are non-free
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and indecomposable. Thus by (1.21) and by its dual statement we see that either h is
a split monomorphism or k is a split epimorphism. Hence, by (12.11.2), either // is a
split monomorphism or v is a split epimorphism. This shows that fl(g) is irreducible; cf.
(2.10).

The converse is proved in a similar way and we leave it to the reader. |

Let T(R) (resp. T(RU)) be the AR quiver of R (resp. Ru) and define T_(R) (resp.
L(RU)) to be the graph obtained from T(R) (resp. T(Rn)) by deleting the vertex of
indecomposable free module and any arrows connecting with this vertex. T(R) is called
the stable AR quiver of R. Then (12.11.3) implies the following:

(12.12) COROLLARY.
£(*)=£(«")

(12.13) REMARK. It is known that the number of arrows ending in (or starting from)
the vertex of free module is doubled when passing from T(R) to F(/2^). See Knorrer [44]
or Solberg [60] for further discussion.
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Chapter 13. Grothendieck groups

We show in this chapter that the Grothendieck group of the category of CM modules
can be computed from the AR quiver if it is finite. This generalizes a theorem of Butler
[20] in the theory of representations of Artinian algebras.

In this chapter (R, m, k) is a Henselian CM local ring and we denote by 5Dt (resp. <£) the
category of finitely generated modules (resp. CM modules) over R. We start by recalling
the definition of Grothendieck groups.

(13.1) DEFINITION. Let 21 be an additive subcategory of an Abelian category, which
is skeletally small and closed under extensions. We consider an Abelian group:

G(2l) = 0Z • X,

where X runs through all isomorphism classes of objects in 21. Denote by Ex(2t) the
subgroup of G(2t) generated by

{X - X1 - X"\ there is an exact sequence 0 -> X1 -> X -> X" -> 0 in 21}.

The Grothendieck group of 21 is defined by

K0(2t) = G(2t)/Ex(2l).

We denote the class of an object X in G(2l) by the same letter X, while the class in
K0(2t) will be denoted by [X].

We are particularly concerned with the Grothendieck groups Ko(9Jt) and Ko(£). By
the natural embedding i : <£ —• 9Jt, one has a homomorphism of groups Ko(i) : Ko(€ ) —>

). We remark that this is actually an isomorphism.
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(13.2) LEMMA. As a group, K0(C) is isomorphic to K0(9H) via K0(i).

PROOF: Let d be the dimension of R. For any module X in 9Jt, take a free resolution to
have an exact sequence:

0 _* y -> Fd^ -> Fd_2 - • > Fi -> Fo -> X -> 0,

where each Fi is free and Y is a CM module, (1.4). Then, by definition, one obtains
[X] = HiZo(-lY[Fi\ + (~1)<i[r] i n K o ( ^ ) . Thus one can define a homomorphism of
groups <p : G(3R) -> K0(C) by sending X to E ^ - l ) ' ^ * ] + ( " ^ P I - Tt i s a n e a sy
exercise to see that <p(M) is independent of the choice of free resolutions and hence it
induces the group homomorphism $ : Ko(9tt) —• Ko(£). (Check this.) Then it obviously
holds that $ • Ko(i) = 1 and Ko(i) • $ = 1, hence Ko(i) is an isomorphism. |

By virtue of this lemma, we usually identify the two groups Ko(SPt) and Ko(£). Note
that, for normal domains of dimension 2, Ko(£) is more approachable than it is for other
cases.

(13.3) LEMMA. Lei R be a normal local domain of dimension 2, and suppose the class
[k] of the residue field is zero in Ko(SDt). Then K0(C) is isomorphic to Z©Cl(ifc), where
C1(.R) denotes the divisor class group of R.

PROOF: Recall that all modules in <£ are reflexive, and one sees that the rank function
M i—• rank(M) induces a group homomorphism rk : Ko(C) —• Z, which is surjective, since
rk([JR]) = l.

For any module X in SDT, it is known (see Matsumura [47]) that there is a finite chain
of submodules:

(13.3.1) 0 = I o C X i C . . . C Xn- i CXn = X, X;/X t_i ~ R/pu

where each pi is a prime ideal of R (1 < i < n). In particular, the class [X] in Ko(9tt) is
equal to Y^i[R/pi] = £,•([#] — [Pi])- Here we may assume that all pi are of height at most
one, because [-ft/tn] = 0 a n d because R has dimension two. Consequently any element u>
in Ko (9Jt) can be written as

(13.3.2) " = 4R]+ £&„[*],
P

where p runs through all primes of height one and a, bp are integers with bp = 0 for
almost all J), so that the summation is finite. Notice that with the notation of (13.3.2),

(13.3.3) rk(w) = a + £ & p .
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Now define a homomorphism (p : Ko(SPt) —• C\(R) as follows: For an element u written
as in (13.3.2), set <p(u>) = £ p 6p •cKP)i where cl(p) denotes the divisor class of p in C\(R).

It is easy to see that (p is independent of the description of u in (13.3.2) and it actually
defines a homomorphism of Ko(9Jt) to C\(R). (Prove this as an exercise.) Since C\(R) is
generated by the classes of primes of height one, <p is surjective. Therefore we can define
a surjective homomorphism ip : Ko(%Jt) - > Z 0 C\(R) by i/)(u>) = (rk(u>), <p(w))-

Now we prove that xj) is injective. For this purpose, let u> be as in (13.3.2) and assume
tp(cj) = 0. Since a + J2p 6p = 0, such an to has a description

(13.3.4) u = Eci[R/Pi] -"EdjlR/qj],
« j

where pi, c\j are distinct primes of height one and c,-, dj are positive integers. Here we must

have J2{Ci • cl(pi) = £ j dj • cl(qj), since <p(u) = 0. Setting / = n«- p^ and J = C\j q*fj)

(symbolic powers), we see from the definition of divisor class groups that / is isomorphic

to J as an i?-module. In particular, in the group Ko(9#), we have [R/I] = [R/J]. Note

that, in general, for ideals A and B, [R/A C\B] = [R/A] + [R/B] - [R/A + B] in K0(9R),

so that, if A + B is m-primary, we have [R/A C\ B] = [R/A] + [R/B] by the assumption.

Applying this successively to the above, we obtain T.dR/P^] = T,j[R/<\fJ^] in Ko(SW).

Hence £» Ci[R/pi] = "jTj dj[R/qj], and u> in (13.3.4) must be zero as an element of K0(9DT).

This proves the injectivity of tp and the lemma follows. |

Note that the assumption in the above lemma will be satisfied for most cases. More
precisely,

(13.4) LEMMA. With the above notation, assume that R is an excellent ring of positive
dimension and the residue field k is algebraically closed. Then [k] = 0 in Ko(9H).

PROOF: Take a prime ideal p of R such that R/p is of dimension one. Let S be the
integral closure of R/p in its quotient field. Since R is excellent, S is a finite module over
R. Furthermore it is a discrete valuation ring, since JR, hence R/p, is a Henselian ring.
Let t be a prime element of 5. Then there is an exact sequence of 5-modules:

0 > S — ^ S > S/tS v 0,

where S/tS = fc, since it is a finite extension field of k and since k is algebraically closed.
When regarding this as a sequence of ii-modules, we have [k] = [S] - [S] = 0 in Ko(50t)
as required. |
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(13.5) REMARK. The assumption for fc in (13.4) is indispensable. Actually in the next
chapter we will have an example in which [k] ^ 0 in Ko(9#); see (14.12).

Now let us compute the group Ko(C). For this we make the following:

(13.6) DEFINITION. Define the group AR(C) as the subgroup of G(C) generated by

{X - X1 - X"\ there is an AR sequence 0 -> X' -> X -> X" -> 0 in £}.

Clearly we see that AR(<£) C Ex(C) C G(C), while we can prove the following result.

(13.7) THEOREM. (Auslander-Reiten [10]) If R is of finite representation type, then
Ex(C) = AR(C).
PROOF: Recall that there is an embedding of category c : £ —• mod(£); see (4.6). From
this, we can define a homomorphism

7 : G(C) - Ko(mod(C)),

by j(M) = [( , M)] for M G G((£), where we use the same notation as in Chapter 4, so
that ( , M) = HomJR( , M). First we show that 7 is injective. To do this, let M and
N be in €  with [( ,M)] = [( , N)] in Ko(mod(£)). Then there are exact sequences in
mod(C):

(13.7.1) 0 — Fi; — Gi -+Hi->0 (1 < ; < n),

with the equality ( , M) + Ei -R + Ei #* = ( , -AT) + E« Gi in G(mod(£)). Substituting
ii into this equality, we have M + £ t ^(i?) 4- E« ̂ s(^) = ^ + Ei ^«(^) in G(C). Here
note that the sequences of ^-modules 0 -> Fi(R) -> Gt(fl) -> ^(.R) - • 0 are split.
(Prove this.) Hence, EiHR) + ZiHi(R) = ZiGi(R) in G(C). Therefore M = TV in
G(£), and so 7 is injective.

What are the subgroups 7(Ex(£)) and 7(AR(£)) in K0(mod(£)) ? To see this, let

(13.7.2) 0 -+ M1 - • M — M" -+ 0

be an exact sequence in <£. We can define a functor F on C by the exact sequence:

(13.7.3) 0->( ,M / ) -> ( ,Af)->( , M " ) - * F - ^ 0

It is evident that F is in mod(C) and F(R) = 0. On the other hand, we have shown
in (4.9) that any object F in mod(C) with the property F(R) = 0 is obtained in this
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way. Therefore we see that 7(Ex(£)) is the subgroup of Ko(mod(C)) generated by {F G
mod(C)| F(R) = 0}. In the proof of (4.13) we proved that the sequence (13.7.2) is an
AR sequence if and only if the functor F in (13.7.3) is a simple object in Mod(C). This
precisely means that 7(AR(<£)) is a subgroup of Ko(mod(<£)) generated by

{S G mod(£)| S is a simple functor with S(R) = 0}.

Since 7 is injective, to show the theorem, it is enough to prove 7(Ex(£)) = 7(AR(<£)),
hence it is sufficient to show the following:

(13.7.4) For any F G mod(<£) with F(R) = 0 there is a finite series of subfunctors in
mod(C): 0 C Fi C F2 C . . . C Fn_i C Fn = F such that each F,/F,_i (1 < i < n) is a
simple object in Mod(C).

To prove this, consider the module L = ®N where N runs through all the isomorphism
classes of indecomposable CM modules over R. Since R is of finite representation type, L
is a finitely generated module, hence it is CM. Notice that for an arbitrary F G mod(<£)
with F(R) = 0, F(L) is a module of finite length. In fact, if F has the presentation as
in (13.7.3), then F is a subfunctor of Ext#( , M1) and thus F(L) C Ext^(L, M1). Since
Ext^(L, M1) is a module of finite length by (3.3), so is F(L).

We shall prove (13.7.4) by induction on the length of F(L). If F is a simple functor,
then there is nothing to prove. So assume that F is not simple.

Take indecomposable M G C with F(M) ^ 0. Then as in the proof of (4.12), one can
construct an epimorphism TT : F —* 5 M in Mod(<£). Since R is of finite representation
type, £ admits AR sequences; see the proof of (4.22). Hence, by (4.13), we have SM €
mod(<£). Letting G = Ker(Tr), we thus see that the subfunctor G of F is in mod(£),
(4.19). Since the length of F(L) is the sum of those of G(L) and SM{L), the induction
hypothesis can be applied to G, thus (13.7.4) is true for G. Hence it is true as well for
F, and the proof is completed. |

(13.8) REMARK. It has been conjectured by Auslander that the converse of the theo-
rem is true, i.e., if Ex(€ ) = AR(£), then £ is of finite representation type. This was proved
affirmatively for Artinian algebras by Auslander, and for complete one-dimensional do-
mains by Auslander and Reiten [10].

By the theorem, if the AR quiver T of R is finite, then we can compute the Grothendieck
group Ko(<£) only from the information involved in F.

(13.9) Example. Let R = C{x, y, z}/(x3 + y4 4- z2). Then the AR quiver for R is figured
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as follows, cf.(10.15).

e
N
d

\\

From this graph, there are only six AR quivers in C, namely

6 - • a -+ 0 ,0 -+ a

0-*e-+d^e-
0 -> c-* 60d0,

O->6->a0c-*6-»O,

0, O^/^rec-^/^0.

Hence by Theorem (13.7), Ko(C) is the group generated by {a, 6, c, d, e,/, r} with the
relations 2a = 6, 26 = a + c, 2e = d, 2d = e + c, 2c = 6 4- d + / and 2 / = r + c.
Consequently, we have Ko(€ ) ~ Z 0 Z/3Z, and C\(R) - Z/3Z by (13.3).

Since we already know the AR sequences for simple singularities; cf. (12.12), we can
easily compute the Grothendieck groups Ko(£) for these rings. We end this chapter by
exhibiting them below.

(13.10) PROPOSITION. Ko(€ ) for simple singularities are shown in the following.

The Type
An (n :even)
An (n :odd)
Dn (n :even)
Dn (n :odd)

E6

E7

Es

Odd Dimension
Z
Z(2)

Z(3)

IP)

z
Z(2)

z

Even Dimension
Z8Z/(n + l)Z
Z®Z/(n + l)Z
Z ® (Z/2Z)(2)

Z ® Z/4Z
Z © Z/3Z
Z © Z/2Z

z
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Chapter 14. CM modules on quadrics

In the case when R is a hypersurface defined by a quadratic form, CM /^-modules are
rather easy to handle. In fact, we shall show in this chapter that they correspond to
Clifford modules. All ideas below are taken from Buchweitz-Eisenbud-Herzog [18].

Throughout the chapter k denotes an arbitrary field of characteristic unequal to 2 and
(V, Q) is a quadratic space over k, i.e., V is a &-vector space of finite dimension and Q is
a mapping V —» k with the properties:

(14.1.1) Q(ax) = a2Q(x) (aek,xe V), and

(14.1.2) (x, y)g := \{Q(x + y) — Q(x) — Q(y)} is a symmetric bilinear form on V.

Note that if V has a basis {ei, e2,.. . , en} and if it has the dual basis {a?i, £2, • • • > £n}>
then Q is a symmetric form:

n

Y^ aijXiXj (aij €  k, a{j = aji for any ij).

Hence after a change of basis, we may write Q as

(14.1.3) f>,-*? («<€*) .
« = 1

We are interested in the rings defined by quadratic forms.

(14.1) DEFINITION. Let (V, Q) and {xu x2,... , xn} be as above. Then we define:

(14.1.4) S = k[[x\, X2,... , xn]] (the formal power series ring),

(14.1.5) RQ = S/QS.
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As before we denote the category of CM modules over RQ by £(RQ). We are concerned
with the representation type of this category. So, first of all, we need the condition for
RQ to be an isolated singularity; cf. (4.22).

(14.2) LEMMA. RQ has only ah isolated singularity if and only if the bilinear form
( , )Q is nondegenerate.

PROOF: Let Q have the description as in (14.1.3). Then RQ is an isolated singularity
if and only if the ideal of RQ generated by {dQ/dxi\ 1 < i < n} — {2ctiXi\ 1 < i < n}
is primary belonging to the maximal ideal. This is equivalent to at- ̂  0 for all t, which
occurs only when ( , )Q is nondegenerate. |

Recall that CM modules over RQ without free summands are obtained by reduced
matrix factorizations of Q, see (7.6). We show below that these matrix factorizations can
be chosen, up to equivalence, so that all their entries are linear forms. For example, let
S = k[[x, y]] and Q = x2 + y2. Then a pair of matrices

Jx + xy -y-x2y\ (x-xy y + x2y\
{ \ y x-xy ) ' \ -y x + xy )

is certainly a matrix factorization of Q. However this is equivalent to

-y x

which has linear entries.

(14.3) PROPOSITION. (Buchweitz-Eisenbud-Herzog [18]) With the notation in
(14.1), suppose that RQ is an isolated singularity. Then every reduced matrix factor-
ization of Q is equivalent to one with linear entries.

Before proving the proposition, we remark that CM modules with 'linear matrix fac-
torization' have a specific property. For this, let us denote by GQ the associated graded
ring of RQ along the maximal ideal, so that GQ = k[x\^X2^... ,^n]/(Q)- Note that RQ
is an isolated singularity if and only if GQ is.

(14.4) LEMMA. Let (<p,i>)f (</>',i/>f) be reduced matrix factorizations of Q whose en-
tries are linear forms and let M, M' be the CM modules corresponding to them:
M = Coker(<p, ip), M1 = Coker(y>/, ^') . Consider the graded modules

N = Cokei(GQ(-l)W 1> G(
g

n)),

N' = Coker(Gg(-l)("') t
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over the graded ring Gq. Then:
(14.4.1) M is isomorphic to the completion N of N with respect to the irrelevant maximal
ideal, and

Extl
Gg(JV, N')~~ Ex t^ (M, M')

for any i.

(14.4.2) If Rq is an isolated singularity, then Ext%
G (N,N') is an Artinian Gq-module

for any i > 0.
(14.4.3) There is a graded Gq-free resolution of N of the form:

1)<"> - ^ G(
g
n) — N — 0.

(14.4.4) There is an isomorphism of graded Gq-modules:

Extj^AT, N') ~ Ext%(N, N')(-2),

for each i > 0

PROOF: For simplicity write G instead of Gq. Since G = k[xi, £2, • • • , Xn]/(Q)> we have
G — Rq. Hence (14.4.1) is evident from this.

In Ext*G(JV, N')~~ Extj^(M, M'), the latter module is of finite length if i > 0, since
Rq is an isolated singularity; see (3.3). In general, a graded G-module is Artinian if and
only if its completion is Artinian. Hence (14.4.2) follows.

We leave the proof of (14.4.3) to the reader, since it is proved by the completely same
argument as in (7.2).

By (14.4.3) we have an exact sequence of graded G-modules:

0 -^ N(-2) —• G(-l)<n) -£-> G<n) —> N —+ 0.

Hence it follows that Extt
G(AT(-2), N1) ~ Ext£2(AT, N') for any i > 0, which shows

(14.4.4). 1

(14.5) LEMMA. Let N, N' be as in (14.4).
(14.5.1) //Extl

Gg(AT, N1) (i > 0) are Artinian Gq-modules, then, for any i > 0,

Ext*Gg(7V, N')j = 0 whenever i + j> 0.

(14.5.2) / / Rq is an isolated singularity, then EomGQ(N. N')j = 0 for j > 0. (See (3.7)
for the definition of Horn.)

PROOF: (14.5.1) : We use induction on n. If n = 1, then Q = ot\x\ (a\ €  k), hence

every matrix factorization of Q is a direct sum of matrix factorizations of the form
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(/?zi, 7«i) (/?, 7 G &, OL\—fi' 7). If «i = 0, then TV, TV' are free modules and the claim is
obvious. So suppose ot\ ^ 0, and thus we may assume that N = N1 = Gjx\G. Then it
is easy to see that ExtG(TV, TV') ~ k(i) (the module k shifted degree by i), which proves
(14.5.1) for n = 1.

Assume n > 2. Note form (14.4.4) that it is sufficient to prove (14.5.1) for i > 2. One
can choose a linear form z in G that is a nonzero divisor on G, hence on TV and TV'.
(Why?) Set G = G/zG, TV = N/zN and TV7 = N'/zN'. From the short exact sequence
of graded G-modules:

0 > N(-l) —?—+ TV • TV • 0,

we have a long one:

(*) • • • -> Ext^\N, N')(l) - ExfG(JV, N') - f Ext\,(N, N1) A Ext{?(JV, AT')(1) - • • • .

Here an easy computation shows that

(**) Ext'G(TV, TV') - Ex t i^TV, W)(l) for any i > 0.

(Use the fact that Ext^(G, TV') ~ TV'(l) (; = 1) and ĉ  0 (otherwise) to the spectral

sequence:

Ext^AT, Ext'G(G, N1)) =» Ext>>G
+«(N, N').)

Since Ext^(TV, TV') (i > 0) are Artinian modules, we see from (*) and from (**) that

Ext^{TV, TV') (t > 0) are also Artinian. Thus we may apply the induction hypothesis to

the G-modules TV and TV' to get:

Exty{TV, W)j = 0 whenever i + j > 0 and i > 0.

Therefore, letting K{ = Ker(Ext'G(TV, TV') - i Ext*G(TV, iV')(l)), we see from (*) that

{Kl)j = 0 if i + j > 0 and i > 2.

Let £ be an arbitrary element in ExtG(TV, TV');- with t 4- j > 0 and with i > 2. Since

ExtG(TV, TV') is an Artinian G-module, a power of z kills £, i.e. zl£ = 0 for some / > 0.

Then, since zl~l£ €  (iJT*);+/_i, we have zl~x£ = 0 by the above. Continueing this, we can

show that £ = 0, hence (14.5.1) is proved.
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(14.5.2) : Let V = Coker(G(-l)(n') £ G<n')). Then, by (14.4.3), we have the exact
sequence of graded G-modules:

0 > L'(-l) > G<n') • N' > 0,

therefore the following is also exact:

(n')) > RomG(N} Nf) > Extl
G(N,L'){-l).

Then it follows from (4.15.1) that HomG(AT, Nl) is a submodule of Extl
G(NyL')(-l).

Thus to prove (14.5.2) it is enough to show that

Ext1
G(N,L')(-l)j=0 if ; > 0 .

However this is a direct consequence of (14.4.2) and (14.5.1). |

We are now ready to prove the proposition.

PROOF OF PROPOSITION (14.3): Let (<p, VO be a reduced matrix factorization of Q of

size n. Write

where (pi, ifii are matrices of forms of degree i. Taking the homogeneous part of the
equation <p • ip = tp • <p = QI , we see that

so that (<pi)ifti) is also a matrix factorization of Q. Let M be the CM module

Coker(y>i,^i) and set N = Coker(GQ(-l)(n) ^ G%]) as in (14.4). Notice that by

(14.4.3), there is an exact sequences of Gg-modules:

(*) . . . J L . GQ(-2)O) - * U GQ(-1)(«) ^ ^ Gj) • N > 0.

We will show that (<̂>, -0) is equivalent to (<£>i, ^i) .

Looking at the degree 3 part in <p - tfi = ip • <p = QI, we have <p\ • -02 + V>1 * ^i = 0 and

V'l ' ^2 + ^2 • y>i = 0 which means the pair of matrices (y>2, — 2̂) gives a chain map from

the complex (*) to itself:
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Therefore it gives an element of degree 2 in ExtJ; (JV, JV), which must be zero by (14.5.1);
equivalently the chain map is homotopically zero. Thus there are square matrices a.^, 02
consisting of forms in S such that the following equations hold as matrices on GQ:

= <*2 ' <Pl - <Pl ' 0 2 , -V>2 = ~ 02 '

Then these hold true as matrices on RQ, because GQ = RQ. NOW set <pW = (1 —c
02)"1 and I/JW = (1 — 02^(1 — <*2)~X- They are well-defined matrices on S. In fact,
1 — <*2, 1 — 02 have inverses ££^o a2> £ £ o 02 respectively as matrices on 5. (S is complete
!) Note that (<p(2\ V>^) is again a matrix factorization of Q without homogeneous part
of degree 2, so that the matrices are written:

f> E
«=3 «=3

where <p\ , \f)\ are matrices of forms of degree i.
This procedure can be continued inductively to get:

(14.3.1) For any ; > 1, there is a matrix factorization (<pV\ ^0)) of Q (with
(y?, i[>) ) which has the description:

E $\

where ^ , ^ ^ are matrices consisting of forms of degree t. Furthermore there is a pair of
matrices (^-,0^) with ^ = ( l - a j ) ^ ' - 1 ) ( l - 0 i ) - 1 and
(Give a proof of this .)

Since S is complete, we can take

n
J=2 j=2

Then they are invertible matrices on 5 and satisfy

= lim <pW = u>i and B^A'1 = lim

Therefore the matrix factorization (<p, V') is equivalent to (<pi, ^>i) as required. |
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Assume that RQ has only an isolated singularity and suppose we are given a CM module
M over RQ with no free summands. Then the corresponding matrix factorization (<£>, tj))
can be chosen to be reduced. By virtue of (14.3) we may assume that the entries <pij} tpij

are all linear forms, hence are elements in the dual space V* of V. Let m be the size
of the matrices <£>, ift and prepare the A;-vector space U of dimension m with some fixed
basis. Then the above says that <p, t\) give linear maps:

(14.6.1) V —> Endk(U) ; t; -> <p(v) = ( W ( V ) ) , i>(v) = (^-(t;)).

Let k(V) denote the free fc-algebra on V, let Wo, W\ be copies of U and set W = Wo0Wi.
We define a fc(y)-module structure on W as follows:

(14.6.2) An element v in V acts on Wo by <p(v) : Wo —> Wi and acts on Wi by ̂ (^) :

Wi - • Wo.

Notice that \j)(v)(f>(v) = Q(v)lw0
 a n ( i V?(V)V;(V) = Q(v)lwi for any v in V. Hence,

(14.6.3) v2 - Q(v) acts trivially on W for any v eV.

In other words, W is a module over the ring

(14.6.4) k(V)/(v2-Q(v)\ veV).

(14.6) DEFINITION. The Jb-algebra defined by (14.6.4) is called the Clifford algebra
over the quadratic space (V, Q), and is denoted by C(V}Q) or C(Q). Define the degree
of an element v\V2--vn €  C(Q) (v{ G V, 1 < i < n) as n (mod 2), which is well-
defined by (14.6.4). Write C0(Q) (resp. Ci(Q) ) as the subspace of C(Q) generated by
all homogeneous elements in C(Q) of degree 0 (resp. 1). It is easily seen that Co(Q) is a
subalgebra of C(Q) and that C\(Q) is a C0(Q)-module. Furthermore C(Q) = C0(Q) ®
C\{Q) is a Z/2Z-graded algebra over k.

We denote by A(y>, tp) the C(Q)-module W defined by (14.6.2). It is clear from

the definition that A(y>, i/>) is a Z/2Z-graded C(Q)-module by defining graded pieces:

Next let (a, f$) : (y?, ̂ ) —• (y>;, V'O D e a morphism between reduced matrix factorizations
with linear entries:
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Let ao, A) be the constant terms of the matrices a, /3 respectively, (that is, «o is the
matrix obtained from a by substituting 0 in all variables X{ in a). Then define a k-
linear map A(a,/?) : A(y>,V0 — A(y?',V>') hV A(a,/?)(w0) = /30(w0) €  A(p',y/)0 (™o €
A(y>,V0o) a n d A(<*,/?)(wi) = ao(wi) €  A(y?', V')i (wi €  A (^ '0 ) i ) - Since c*o • p(v) =
(f'(v) - fa and /?o • VKV) = V''!1') * <*o for any v €  V, we easily see that A(a,/9)(v«;) =
i>A(a, 0)(w) (v €  V, w G A(<p, VO), hence A(a,/?) is a C(Q)-homomorphism which is
obviously Z/2Z-graded.

Let 0t9tt(C(Q)) denotes the category of finitely generated Z/2Z-graded modules and
degree-preserving homomorphisms over C(Q). Recall that RMEs(Q) is the category of
reduced matrix factorizations; see (7.3.2). Notice that we showed in (7.4) that RMF5(Q)
is equivalent to the category .£(-#). Under the assumption that RQ is an isolated singu-
larity, we have defined above the functor from RMFc(Q) into 0t9tt(C(Q)):

(14.7.1) A : RMF5(Q) —> gtSW(C(Q)).

(14.7) THEOREM. (Buchweitz-Eisenbud-Herzog [18]) Suppose RQ is an isolated sin-
gularity. Then the above functor gives rise to an equivalence of categories.

PROOF: We construct a functor in the reverse direction. Let W = WQ(&WI be an object
in (Jt9QT(C(Q)). Since it is graded, any v i n V determines &-linear maps (p(v) : Wo —• W\
and xf>(v) : W\ -^ Wo. By the definition of C(Q), one sees that <p(v) • ip(v), \j){v) • <p(v)
are the multiplication maps by Q(v) on W\, Wo respectively. Taking v £V as Q(v) ^ 0,
we see that Wo and W\ are isomorphic as A;-vector spaces and we may identify them:
JJ = Wo = W\. Since (f(v), r^(v) are linear in v, fixing a base of £/", we may write
(p = ((pij), %j) = (V'ij), where <pij, tjjij are all linear functions on V, hence are linear forms
in S. Thus (y>, ip) gives a reduced matrix factorization of Q with linear entries. We will
denote this by Q(W).

For a graded C(Q)-homomorphism / : W = Wo 0 W\ -> W = W& 0 ^ we define a
morphism ©(/) : Q(W) —* 0(W') as follows: Since / preserves degree, it gives A;-linear
maps /o : Wo —• WQ an<^ /l : ^ i ~* ^ I - They satisfy fi(vwo) — vfo(wo), fo(vwi) =
vfi(wi) (v G V, wo G Wo, ttfi €  Wi), since / is C(Q)-linear. Therefore f\-(p(v) = <p'(v)'fo,
/o"0(v) = i)'(v)'fi as mappings on Wo, Wi respectively. Regarding /o, / i as matrices with
constant entries in 5, we see from this that (/o, /i) is a morphism of matrix factorizations.
Write this as 0 ( / ) . Thus we have defined a functor 0 : gtSDT(C(Q)) - • RMF5(Q).

By the construction it is easy to see that A(0(W)) = W and A(0(/)) = / for a
graded C(Q)-module W and a graded C(Q)-homomorphism / , so that A • 0 is the
identity functor on 0tSPT(C(Q)). It is also obvious that 0A((<p, tj))) — (y?, if)) for a matrix
factorization (y>, \j)) with linear entries. Hence, to prove the theorem, it remains to show
that 0A((a,/?)) = (a,/?) for a morphism (a,/?) : (<p, V0 —* ((Pt,ijl) of linear matrix
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factorizations. Let <*o> A) be the constant terms of a, /? as in the definition of A. Then
by the construction of 0, it can be seen that 0A((a, ft)) = (ao, A))- We have to show the
equality (or, ft) = (<*0,A)) as a morphism in RMF5(Q). For this, let M = Coker(<p, V>)>
M' = Coker(V>7, <p') and let

N =

N' = Coker(Gg(-l)<B'> £ G J ' } )

as in (14.4). Recall that the functor Coker : BMJLs(Q) —* £(RQ) 1S a n equivalence of
categories, (7.4). Hence it is sufficient to show that Coker(ct, ft) = Coker(ao, A)) as an
element in Hom^(MTM /) . Let us write a, ft as

«=0 «=0

where a;, fti are matrices consisting of forms of degree i. Looking at the degree t 4-1 part
in a- <p = <p' - ft, ft - \j) = if)1 • a, we see that (at-, fti) is a morphism of matrix factorizations
for any i. It is thus easy to see that (ai,fti) gives an element in Hom(~ (N, N1) of
degree i, and through the completion map Homg^(A^? N

f) —• Hom^(M, M7) it goes to
Coker(a,-,#). However we know from (14.5.2) that HomGg(i\T, N')i = 0 (i > 0), hence
Coker(aj,#) = 0 (i > 0). Therefore we conclude that Coker(a, ft) = Coker(a0, A)) as
desired. |

Recall that if ( , )Q is nondegenerate, then the Clifford algebra C(Q) is a graded central
simple algebra over &, so that the objects in 0tSOT(C(Q)) are completely reducible and
gt9Jt(C(<2)) has only a finite number of simple objects; see Lam [46]. Hence we see from
the theorem and from (14.2) that the CM ring RQ is of finite representation type if and
only if the bilinear form ( , )Q is nondegenerate.

In the rest of this chapter we assume that all quadratic forms have nondegenerate
bilinear forms. If the quadratic form (V, Q) is isomorphic to the direct sum of {V1, Q1)
with the hyperbolic space H, then the Clifford algebra C(Q) is known to be isomorphic
to C(Q')<8>kC(H) as a graded fc-algebra, where ® denotes the graded tensor of graded
algebras; see Lam [46]. Here C(H) is the total matrix algebra, hence the category
(Jt9K(C(Q)) is Morita equivalent to QtVJl(C(Q')). Recalling that the Witt ring W(k) of
k is defined to be the set of all isomorphism classes of quadratic spaces over k modulo
the hyperbolic spaces, we have shown:

(14.8) PROPOSITION. Suppose that quadratic forms (V,Q) and (V\Q') define the
same class in the Witt ring W(k). Then the categories RMF5(Q) and RMF5/((?

/) are
equivalent.
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(14.9) REMARK. By the proposition VK(fc) classifies the categories of nonfree CM
modules over the rings defined by quadratic forms. However one can show that they
can be classified by a smaller group than W(k). To see this, recall that the Brauer-
Wall group BW(k) is the group consisting of all classes of graded central simple algebras
over k modulo graded Morita equivalence. Note that, by definition, there is a natural
epimorphism of groups W{k) —• BW(k) which sends the class of (V, Q) to the class of
C(Q). For example, W(k) ~ BW{k) ~ Z/2Z when k is an algebraically closed field, and
W(R) ~ Z, BW(R) ~ Z/8Z; see Lam [46]. If the Clifford algebras C(Q) and C(Q') have
the same class in BW(k), then it is obvious by (14.7) that RMEs(Q) is equivalent to

Recall that n(R) denotes the number of classes of indecomposable CM modules over
R. For the rings defined by quadratic forms we can easily evaluate these numbers.

(14.10) PROPOSITION. Suppose the ring RQ has only an isolated singularity. Con-
sider the condition:

(*) either dim^V) is odd, or dimk(V) is even with (- l)d i m(F)/2 det(Q) g (k*)2

Then TI(RQ) = 2 under the condition (*), but otherwise n(RQ) = 3.

PROOF: Note from (14.7) that U(RQ) is bigger than the number of classes of simple
objects in 8t97t(C(Q)), by just one. Since C(Q) is a graded Azumaya algebra, there is
only one class of simple module over C(Q) up to degree shifting. Therefore 0tSPt(C(Q))
has at most two simple objects. More precisely, if W = Wo 0 W\ is a simple object
in 0t9#(C(Q)), then shifting the degree, the module W = W\ 0 Wo is also simple in
0t3R(C(Q)). Hence W, W are all of the simple modules. If W ~ W as a C(Q)-module
then TI(RQ) = 2, and otherwise TI(RQ) = 3.

It is known from the theory of quadratic forms [46] that the even Clifford algebra
Co(Q) is an Azumaya k-algebra when (*) is satisfied, otherwise CQ(Q) is a product of
two Azumaya algebras. Thus, assuming the condition (*), we see that WQ ~ W\ as a
C0(Q)-module, hence W ~ Wo 0co(Q) C(Q) ~ W a n d consequently n(RQ) = 2. When
(*) does not hold, if C0(Q) ~ C x C" with C", C" Azumaya algebras over k, then there
are nonisomorphic C0(Q)-modules W'y W", hence W ®co(Q) C(Q) a n d w" ®C0{Q) C(Q)
are nonisomorphic simple objects. Therefore TI(RQ) = 3. I

(14.11) Example. If k is an algebraically closed field, then every quadratic form is equiv-
alent to YAL\ X] €  k[x\, a?2, - - - , xn] (m < n). Thus if RQ is an isolated singularity, then
RQ = k[[x\, £2,. . . , xn]]/(xl + xl + .. . + «n)- ^y ^ne a°ove proposition we have U(RQ) = 2
if n is odd, and n(RQ) = 3 if n is even. This is a special case of the Knorrer's periodicity
(12.10).
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(14.12) Example. Consider the case when A; is the field of real numbers R. Then each
quadratic form is equivalent to

Q = x\ + x\ + . . . + x\ - a£+ 1 - x2
p+2 - . . . - x\+q e R[xu x2,... , xn].

Note that RQ is an isolated singularity if and only if n = p + q. By (14.10) one can verify
that TI(RQ) = 3 if p — q is a multiple of 4, otherwise TI(RQ) = 2.

Furthermore one can easily describe the AR quivers for several rings of this type. For
example, if p = 2 and q = 0 so that R = RQ = R[[x, y]]/(x2 + y2), then the AR quiver
of R is shown in (14.12.1), where m is the maximal ideal of R. It is easy to see that
End#(m)/rad(End#(m)) ~ C. The indices in the diagram are attached as defined in
(5.3). Because it follows from this diagram that 0—•tn—> R2 —»m—>-0is the unique
AR sequence in £(R), we can compute the Grothendieck group of £(R) by the method
developed in (13.7). Actually Ko(C(R)) is an Abelian group generated by [R] and [tn]
with relation 2[R] = 2[m]. It, then, follows that the class of the residue field of R is
nonzero in Ko (£(#)), since [#/tn] = [R] — [m] ^ 0. This gives the example announced in
(13.5).

( 2 , 1 )

( / , 2 )

(14.12.1)
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Chapter 15. Graded CM modules on graded CM rings

We are concerned in this chapter with graded CM modules over a graded CM ring
and study their relationship with completed CM modules. If a graded ring is of finite
representation type, then we can show that every complete CM module comes from
graded one; see (15.14).

Let R = £ £ o Ri be an arbitrary N-graded CM ring with Ro = k a field. Setting
m = £,->() Ri, we denote by R the completion of R in m-adic topology. As before,
let £(R) be the category of CM ^-modules and S-homomorphisms, and let gt€(R)
denote the category of graded CM modules over R and graded homomorphisms preserving
degree. Likewise 9Jl(R) (resp. Qt$R(R)) is the category of finitely generated ^-modules
(resp. finitely generated graded .R-modules) and /£-homomorphisms (resp. graded R-
homomorphisms preserving degree). In addition, for M €  Qt^Jl(R) and n G Z, M(n) €
QtWt(R) is defined by M(n)i = Afn+$\ Graded modules M, N €  QtWl(R) (resp. €
0t(£(.R)) are said to be isomorphic up to degree shifting if M(n) ~ N in Qt9Jt(R)
(resp. in Qt£(R)) for some integer n. Notice that, for M,N €  QtVJt(R) (resp. €  Qt£(R)),
Hom#(M, N) is a graded module of all graded i2-homomorphisms from M to N and that
Hom0ts!tt(#)(M, N) (resp. Homflt(r(#)(M, N)) is the degree 0 part of HOIIIR(M, N).

For the convenience we say that the category gtC(JR) is of finite representation type
if there are only a finite number of isomorphism classes of indecomposable graded CM
modules up to degree shifting. We note that any arguments in previous chapters have
their graded versions, so that the statements concerning £(R) in preceeding chapters are,
after a slight modification, all valid for the category gtC(i^). For example the graded
version of Theorem (4.22) can be stated as follows: If QtC(R) is of finite representation
type, then R is a graded isolated singularity, by which we understand that each graded
localization R^ = {x/a\ x 6 R, a £ R — p is homogeneous} is regular if p is a graded
prime ideal with p ^ tn.

We would like to prove the following
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(15.1) PROPOSITION. Qt£(R) is of finite representation type if €{R)  is.

For any M € Qt£(R) we denote its tn-adic completion by M. Likewise / is the com-
pletion of a graded homomorphism / between graded modules. Thus we can define the
functor from Qt€(R)  into £(R) by taking completion.

Proposition (15.1) now follows from the following

(15.2) LEMMA.
(15.2.1) If M is an indecomposable graded R-module in #t%Jt(R), then M is also inde-
composable as an R-module.
(15.2.2) Let M and N be indecomposable objects in QtM(R). IfM~N in Wt(R), then
M is isomorphic to N up to degree shifting.

PROOF: (15.2.1): Write E = EiaEi = End#(M) and VI = E«<o^- Note that «K
is a nilpotent graded ideal of E. Since idempotents are split in the category gt97t(.ft),
Eo = Endflt9rt(#)(M) is a local ring. Note also that End-(M) ~ E. Let e(^ 0) be
an idempotent in E. We have to show that e = 1. Denote by e the class of e in
E/VXE. Since there is an isomorphism E/VIE ~ (E/VlEy = II£o^t, we can write
e = er + er-n 4- er_|_2 + • • • {r ^ 05 er ^ 0) where each e,- is in E{. Comparing the terms of
minimal degree in e2 = e, we see that e2 = er, hence we obtain r = 0 and eo = 1, as EQ

is a local ring. Since Z)»>o e* € r a d ^ J this implies that e is a unit in E/VIE. Therefore e

is a unit in E and thus e = 1 as required.
(15.2.2): Let Hi = RomR{M,N) and H2 = KomR(N,M). Since M and N are finitely
generated i2-modules, we see that

^(M, N), H2®RR~ Homg(AT, M).

By the assumption there are / G Hom^(M, N) and ̂  € Hom^(A^, M) with / g = 1^ and

g • f = 1 ~ Then, by the above isomorphisms, we have homogeneous elements h{j €  ^

and â j G i£ for i = 1, 2 such that / = £ j /iij ® aij and g = J2j h2j ® a 2j;. Thus / • # = 1^

implies ]T)jjfc hijh2k 0 aijci2ik = Ijy- Since End^(iV) (8>̂  S ~ End^(AT) is a local ring by

(15.2.1), we see that, for some j and k, h\jh2k^a\ja2k is a unit in this ring. Then a\ja2k

is a unit in R and h\jh2k is a graded automorphism on N. Thus N is isomorphic to a

direct summand of M up to degree shifting. Since both M and N are indecomposable,

this shows (15.2.2). I

This lemma shows that the set of classes of indecomposable graded CM modules over

R under isomorphisms up to degree shifting is a subset of the set of isomorphism classes

of indecomposable CM modules over R. Therefore the proposition follows.

We can prove that the converse of Proposition (15.1) is true as well. To do this we need

several auxiliary results.
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(15.3) DEFINITION. We say that a finitely generated module M over Rjs gradable
if there is a finitely generated graded module X over R such that M ~ X. Similarly
an i£-homomorphism / : N —• M of gradable modules is said to be a gradable homo-
morphism if there is a graded homomorphism of graded modules g : Y —• X with a
commutative diagram in €(R):

N —=-> Y

M — = - • X

(15.4) REMARK. Let KR be the graded canonical module of the graded CM ring R.
(For the definition of KR, we understand (1.10) in the graded sense.) Then it is known
and can be easily seen that the canonical module K^ of R is isomorphic to KR, whence
it is gradable. For a finitely generated graded R-module X, denote the graded canonical
dual Hornft(X, KR) by X'. And for an i£-module M we also write M1 — Hom^(M, Kg)-
Then by the above if M — X, then M1 — X1. As a result, the canonical dual of a
gradable module over R is also gradable. Similarly, for a gradeable ^-module M, the
ft-dual M* = Hom^(M, R) of M is also a gradable module.

Let X be a graded CM module over R and let M = X. Consider a syzygy of X as a
graded .R-module:

0 — Y —> Fn_x !±=l Fn_2 —> > Fr A Fo — X —> 0,

where all F{ (0 < i < n) are free ^-modules and /,- (1 < i < n) are graded R-
homomorphisms. Then by the exactness of completion, it follows that Y is a syzygy
of M as an ^-module. This implies that a syzygy module of a gradable module is also
gradable. A similar argument to this shows that tr(M) is also gradable whenever M is
gradable.

Recalling from (3.11) that AR translation is given by

r(M) = (SyZ
dti(M))',

we conclude that r(M) is gradable if M is. More precisely, if M ĉ  X for a gradable
CM module X, then, denoting rgr(X) = (syz^tr(M))' where syz and tr are taken in the
graded sense, we have the equality:

(15.4.1) r(M) = TgZx).

Furthermore we notice that any direct summand of a gradable module is gradable. In
fact, if M = X with X a graded module, then, decomposing X into a sum of graded
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indecomposable modules: X = £»X», we see from (15.2.1) that M = Y,iXi is a direct
decomposition of M into indecomposable modules, hence that any summand of M is a
sum of several X,'s by the Krull- Schmidt theorem.

Recall that R is a graded isolated singularity if each graded localization R^ is
regular for any graded prime p(^ m). If this is the case, the graded version of (3.3)
shows that any graded CM module over R is locally free, that is, for any graded prime
ideal p(^ m), M^ is R^-iree.

(15.5) LEMMA. Assume that R is a graded isolated singularity. Then, for any X,Y E
QtC(R) and for any positive integer n, there is a natural isomorphism:

Extn
R(X,Y)~Extl(X,Y).

PROOF: Since the completion is faithfully flat, there is a natural .isomorphism of R-

modules: Ext£(X,y)~~ Ext |(X,Y). Since the graded CM module X is locally free,
Ext^(X, Y) is an Artinian module for n > 0, in particular it is a complete module, i.e.,
Extn

R(X,Yr~Extn
R(X,Y). |

(15.6) LEMMA. Assume that R is a graded isolated singularity and let M be an inde-
composable gradable CM module over R.
(15.6.1) If M is not free, then there is an AR sequence ending in M:

0 > T(M) —-!-> E — ^ M • 0,

where T(M), E are gradable modules and p, q are gradable homomorphisms.
(15.6.2) If M is not isomorphic to the canonical module K%, then there is an AR sequence
starting from M:

0 • M —?-> G — ^ T~1(M) > 0,

where G, r~1(M) are gradable modules and p, q are gradable homomorphisms.

PROOF: By duality it is sufficient to prove (15.6.1). Note first that R is an isolated
singularity, since the defining ideal of singular locus of R is gradable and it is m-primary
by the assumption. Let X be a graded CM module over R such that X ~ M. We
showed (cf. (3.13)) that the AR sequence a ending in M corresponds to the unique socle
element in Ext^(M, r(M)). Since Extjj(Af, r(M)) ~ Extl

R(X, rgr(X)) by (15.4.1) and
(15.5), its socle is in part of maximal degree in this graded module. Hence we can take
a socle element as a homogeneous element in Ext^(X, rgr(X)). Let p : 0 —» rgr(X) —>
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Y —• X —• 0 be a short exact sequence of graded CM modules corresponding to the
homogeneous socle. Then the AR sequence ending in M is given by the completion of
p. Hence all the modules and all the homomorphisms appearing in the AR sequence are
gradable. |

(15.7) PROPOSITION. Suppose that R is a graded isolated singularity. Let M and N

be indecomposable CM modules over R and assume that there is an irreducible morphism

M->N in £(R).

(15.7.1) If N is nonfree and gradable, then M is gradable.

(15.7.1)' If M is not isomorphic to K^ and if M is gradable, then N is gradable.

(15.7.2) If M is nonfree and gradable, then N is gradable.

(15.7.2)' If N is not isomorphic to K~ and if N is gradable, then M is gradable.

PROOF: (15.7.1) : Since TV is nonfree and gradable, it follows from (15.6.1) that there is
an AR sequence

0 > T(N) > E > N > 0,

where all modules are gradable. Then by (2.12), M is a direct summand of E, hence it

is also gradable.

(15.7.2) : If N ~ R, then there is nothing to prove. So we assume that N is nonfree.

Then there is an AR sequence of the form:

0 > r(N) > E®M • N  > 0,

since there is an irreducble morphism from M to N. Thus, by (2.12), there is an irre-

ducible morphism from T(N) to M. Since M is nonfree and gradable, we can construct

an AR sequence

0 > r(M) > L • M > 0,

consisting of gradable modules; see (15.6.1). Then r(N) is a direct summand of L, hence

it is gradable. Since T(N) j> K^ (15.6.2) shows that N = r~l(r(N)) is also gradable.

(15.7.1)' and (15.7.2)' follow from (15.6) by a similar argument to the above. |

As a special case of this proposition we obtain:

(15.8) COROLLARY. Suppose that R is a graded isolated singularity and that R is not
Gorenstein. Let M and N be indecomposable CM modules over R and assume that there
is an irreducible morphism M —• N in €,(R). If one of M and N is gradable, then both
are gradable.

PROOF: Since K^ ^ R by the assumption, we can apply (15.7) to get the corollary. |
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(15.9) NOTATION. We denote by T the AR quiver of the category <L(R). Moreover
Tgr denotes the subgraph of F consisting of all vertices of indecomposable gr ad able CM
modules and all arrows connecting them.

With this notation, (15.8) can be stated as follows:

(15.10) COROLLARY. Suppose that R is a graded isolated singularity and thai R is
not Gorenstein. Then Tgr is a sum of several connected components ofT.

As we naturally expect, this corollary is true also in the case that R is Gorenstein. To
show this we need the following proposition.

(15.11) PROPOSITION. Suppose thai R is a Gorenstein ring. Let M be a gradable
R-module that is not necessarily CM and let n be a nonnegaiive integer. Then there is a
gradable CM module L over R and there is an epimorphism

Homg( ,L)—*Extn
n( ,M)

in the Auslander category mod(<£(i£)).

PROOF: Take a graded .ft-module X with X ~ M. As in (4.18) we prove the proposition
by induction on t = dim(#) — depth(X), where dim(#) (resp. depth(X)) is the graded
Krull dimension of R (resp. the graded depth of X). Note that dim(i?) = dim(^) and
depth(X) = depth(M).

Suppose t = 0. Then X is a graded CM module. So, if n = 0, then it is enough to put
L = M. Taking a graded free cover of the graded canonical dual X1 of X, we have an
exact sequence of graded modules: 0—> Y -+ F -+ X1 —>>0, where F is free and Y is a
graded CM module over R. Clearly its dual sequence is also exact:

0 > X • F1 v Y1 > 0.

We take the completion of this sequence to get the exact sequence of ̂ -modules:

0 • M > F ' v Y' • 0,

where we note that Y1 is also a gradable CM module over R. Then we obtain an exact
sequence and isomorphisms in mod( <£(/?)):

, F') —+ Homg( , y ' ) -+Ex t^ ( , M) —> 05

1( ,Y') (n > 1).
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The first sequence shows the proposition in the case n = 1. For n > 1, the above
isomorphism shows that the proof is reduced to the case n — 1. Hence the proposition is
proved by induction on n.

Next suppose t > 1. Let 0—•Z—• G —• X —• 0 be an exact sequence of graded
i£-modules where G is free and Z is a graded module with depth(Z) = depth(X) + 1.
Letting N = Z and P = G, we have a short exact sequence 0 —> N —• P —• M —> 0 and
we may apply the induction hypothesis to TV. Note that Ext ~( , P) = 0 (i > 0) as an
object of mod(£(i2)), since R is a Gorenstein ring and since P is a free i2-module. Thus
we have isomorphisms of functors:

Ext |( , M ) ~ E x t | + 1 ( ,N) ( n > l ) .

This shows that, by the induction hypothesis, the proposition is true when n > 1. It
remains to show in the case n = 0. From the above exact sequence, we have an exact
sequence:

Horrid ,P) > Hoiri£( , M) > Ext^( , N) • 0.

By the induction hypothesis there is a gradable CM module Q such that an epimorphism
Hom^( ,Q) -» Ext^( ,AT) exists in mod(<£(£)). Since Hom^( , Q) is a projective
object in the Auslander category mod(C(J?)) (see (4.8)), the above epimorphism can be
lifted to a morphism Hom^( ,Q) —• Hom^( ,M). Then putting L = P 0 Q, we can
construct an epimorphism Homg( , L) —> Hom^( , M). |

As a corollary of Proposition (15.11) we can show that a CM approximation of a
gradable module over R can be taken as a gradable CM module. More precisely we show:

(15.12) COROLLARY. Suppose thai R is a Gorenstein ring. Let M be a gradable
module in Qt$Jl(R). Then there exist a gradable CM module L over R and a gradable
homomorphism f €  Homg(Z>, M) that satisfy:

(15.12.1) Any homomorphism from any CM R-module N to M is a composition of f with
some homomorphism from N to L.

PROOF: Apply (15.11) to the case n = 0. I

Using this corollary we can show that (15.10) is true in general.

(15.13) PROPOSITION. Let R be a graded isolated singularity. Then Tgr is a sum of
several connected components ofT.

PROOF: By (15.10) we may assume that R is a Gorenstein ring. Let [M] be any vertex
of F5r. We have shown in (15.7) that if M is nonfree, then any vertex connected with
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[M] by an arrow in F belongs to F^r. We have to show the same when M ~ R. Since
the maximal ideal tn of R is a gradable module, it follows from (15.12) that there are
a gradable CM module L and a gradable homomorphism / : L —> m with the property
(15.12.1).

Let N be an indecomposable CM module over R. If there is an irreducible morphism
^ f ^

g : N —» R, then the image of g is in m, thus g is decomposed a s T V — • £ — • m c # .
Then by the definition of irreducible morphisms, TV is isomorphic to a direct summand
of Lj and hence N is also gradable.

If there is an irreducible morphism R —• N, then the dual N' —• R1 = R is also an
irreducible morphism and the above shows that N1 is gradable, hence N is also gradable
by (15.4). Thus the proposition is proved. |

Now we can prove the converse of (15.1).

(15.14) T H E O R E M . (Auslander-Reiten [15]) Suppose thai Ro = k is a perfect field. If

gt€(R)  is of finite representation type, then so is C(R). And if this is the case, all CM
modules on R are gradable.

PROOF: Since Qt<L(R) is of finite representation type, the graded version of Theorem
(4.22) shows that R is a graded isolated singularity. Hence by (15.13), F^r is a sum of
connected components of F. On the other hand, note that F^r is a finite graph by the
assumtion. Then Theorem (6.2) implies that F = F^r. I
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Chapter 16. CM modules on toric singularities

In this chapter we are interested in the representation type of toric singularities, and
we shall give some examples of CM rings of dimension three, which are non-Gorenstein
and of finite representation type.

In what follows k will denote an algebraically closed field of characteristic 0 and k*
denotes the multiplicative group of all non-zero elements in k.

Recall that an algebraic torus T of dimension m is a direct product (k*)m. Suppose
that the torus T acts rationally on a vector space V of dimension n. Then it can be
seen by complete reducibility of torus-action that there exist a basis {si, xi,... , xn} of
V and integers aij (1 < iI < n, 1 < j < m) such that the action is given by t • X{ =
iiili2i2-'tmmxi C1 < « < n) f o r * = (<i,*2,--- ,*m) €  T. In particular, the action is
completely determined by the integer matrix A — (atJ). This action can be extended to
the symmetric algebra S = S(V) = k[x\, xi,... , xn] of V and we denote the invariant
subring of S by R(A), i.e.

R(A) = {feS\f{t'XUt-x2)...,t- xn) = f(xu z 2 , • • • , *„) for any t €  T } .

This ring may be written in the following manner:
If H is the sub-semigroup of Mn) consisting of a = (c*i, c*2,... , an) with £,• a,-ajj = 0 (1 <
j < m), then R(A) is the semigroup ring k[xa\ a €  H], where xa denotes x^x^2 • • • x%n.

We can make the ring R(A) a Z-graded ring by defining degree as follows:

(16.1.1)

Writing R+(A) for the maximal ideal generated by all homogeneous elements of positive
degree, we define R(A) to be the R+(A)-a,dic completion of R(A) and call it a toric
singularity. Note that R(A) = k[[xa\ a €  H]] with the above notation.

Of most importance is the following fact proved by Hochster [40]:
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(16.1) PROPOSITION. R(A) and R(A) are both CM rings.

By this fact it is natural to ask when R(A) is of finite representation type. By virtue of
(15.1) and (15.14) the problem can be reduced to asking about the categroy &t£(R(A))
of graded CM modules over R(A). For convenience we make the following

(16.2) DEFINITION. An integer matrix A is said to be of finite type if the toric
singularity R(A) is of finite representation type, otherwise it is of infinite type.

For example A = ' ( l , 1 , - 1 , - 1 ) is of finite type, since

R(A) = k[[xix3, xiX4, x2x3, X2X4]] ~ k[[x, y, z, w]]/(xw - yz)

is a ring of simple singularity of type (Ai), while B = '(2,1, —2, —1) is not, because

R(B) = k[[xixs, xix\, x\xz, x2x4]] ~ k[[x, y, z, w]]/(xw2 - yz).

(16.3) REMARK.
(16.3.1) Let A be an integer matrix and let B be a matrix obtained from A by successively
permuting rows, making elementary transformation on columns and multiplying by a
nonzero integer. Then R(A) is isomorphic to R(B) as a fc-algebra, hence A is of finite
type if and only if B is.
(16.3.2) Let A be an integer matrix, one of whose rows is null, and let B be a matrix
obtained from A by deleting a null row. Then A is of finite type if and only if R(B) is a
polynomial ring over k.

Actually, note that under the assumption, R(A) ~ R(B)[x] (a polynomial ring over
R(B)). Therefore the claim is immediate from the fact that a ring of finite representation
type has only an isolated singularity, (4.22).
(16.3.3) Let A be an integer matrix of size n x 1. If n < 3, then A is of finite type.

This is just a restatement of the fact that a quotient singularity of dimension 2 is of finite
representation type, (10.14). In fact, by (16.3.1), we may assume that A = '(—a, 6, c) with
a, b and c positive integers. Then consider a cyclic group (<r) of order a and define the
action of <r on the formal power series ring S\ = [̂[2/1,2/2]] by <r{y\) = (by\, (̂2/2) = C°2/2>
where £ is a primitive a-th root of unity. It is easy to see that ^(^4) is isomorphic to the
ring of invariants S^ ' .

Adding to the above we show:

(16.4) PROPOSITION. Let A be an integer matrix of any size and let B be a matrix
obtained from A by deleting one of its rows. Then B is of finite type if A is.

PROOF: Assume that A = (a,j) is an (n x m)-matrix. We may assume by (16.3.1) that
one gets B by deleting the first row of A. First we claim the following:
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(16.4.1) There is a natural embedding of fc-algebras: R(B) —• R(A), which has an algebra-
retraction.

To prove this, let H(A) = {a €  Mn)| ocA = 0} and H(B) = {/3 e N^n~^\ j3B =
0}. We may consider H(B) as a sub-semigroup of H(A) by regarding each /3 as (0,/?)
in l\|(n). By this we have an embedding of R(B) into R(A). For example, if A =
' (1 ,2 , -1 , -1) and B = ' (2 , -1 , -1 ) , then R(B) = k[{x2xl,X2XZxi,x2x\]) C R(A) =
^[[^1^3? xix4i X2x3i X2X3X4, x2x\]\. In this example, if a is an ideal of the ring R(A)
generated by all monomials containing the variable x\, then R(B) ~ R(A)/a thus the
ring extension has a retraction. This works in general setting. Actually, we define a
fc-algebra mapping TT : R(A) —» R(B) by sending a monomial xa = x^x*2 •• • x%n to
X22xs3 ''' xnn ft ai = 0, and otherwise 0. It can easily be seen that TT is well-defined and
it gives a retraction of the algebra extension R(B) C R(A). Taking the completion of
this, we show (16.4.1).

Secondly we notice that the dimension of R(A) is equal to the dimension of the Q-vector
space U(A) spanned by all integral vectors in H(A) ; see [40].

Note that U(B) = U(A) n {ax = 0}, hence either U(A) = U(B) or dim(£(j4)) =
dim(^(J5)) + 1. In the first case, there is nothing to prove, because R(A) = R(B). We
thus may assume the equality dim(R(A)) = dim(i2(i?)) + 1.

By the claim (16.4.1), the proposition is a direct consequence of the following more
general result:

(16.5) THEOREM. Lei R C R! be a ring extension of normal analytic local CM do-
mains. Suppose that the extension has a ring retraction and that dim(Rf) = dim(R) + 1.
Then R is of finite representation type if R1 is.

PROOF: If dim(i2) < 1, the theorem is obviously true, since then, R is a regular local
ring. So we assume that dim(.ft) > 2. Note that R! is an isolated singularity, because
it is of finite representation type. Since the extension R C R1 has a ring retraction, we
may write R = R'/ty, where ty is a prime ideal of R1 of height one. Letting ^J"1 = {x €
Q(R)\ x^p C Rf}, we consider the exact sequence of R'-modules:

(*) 0 • R! • «p-1 - ? — U > 0,

where U = *#~l/R!. It follows from the definition that tyU — 0, hence U is a module
over R = R'/ty. We notice the following:

(16.5.1) For any Q €  Spec(R') that is distinct from the maximal ideal of R1, V'lR' is

a free module over R! .
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(16.5.2) For any q €  Spec(R) that is distinct from the maximal ideal of R, IT ®# R q is
an isomorphism of #q-modules.

In fact, R1 is a regular local ring, hence a UFD in (16.5.1). Thus tyR'^ is a principal

ideal, and so V~lR' = (VR'Q)~X is also principal, from which (16.5.1) follows. To show

(16.5.2), let Q be the prime ideal of R' with Q/<P = q. Then W1^^ = R'Q by the

above argument, hence 7r®#/ R q : ty^R'/W^R' —> VP~lR' /R' is an isomorphism.
From (16.5.1) and (16.5.2) we can show:

(16.5.3) For any finitely generatated i£-module M, there is an isomorphism of i2-modules:

where ( )* indicates the dual by R.

Indeed, regarding M as an /t'-module via R1 —• i£, we have an exact sequence of
i^-modules from (*):

0 — Torf OP"1, M) -» Torf (U, M) -?-> M -> ^T1 0 ^ Mr^$ U®R,M -+ 0.

From (16.5.1) we see that Torf^(?P~1,M) is an i?-module of finite length. Moreover the
kernel of the map TT <S>RI M = (TT ®# R)  <S>R M is also of finite length by (16.5.2). Thus (p
in the sequence is an isomorphism when localized at any prime ideal of R that is different
from the maximal ideal. Since R is a normal domain of dimension > 2, this implies that
(p* is an isomorphism, hence (16.5.3).

We finally claim the following:

(16.5.4) For any indecomposable CM modules M over Ry there is an indecomposable CM
module P over R1 such that ranki^P ®#/ U) > rank^(M) holds.

If this is true, then we are through. For, if R were not of finite representation type,
then, by (6.4), the set {rank#(M)| M is an indecomposable CM module over JR}, hence
{rankjft(P ®#i U)\ P is an indecomposable CM module over R'}, would have no bound
and R1 would be of infinite representation type.

To prove (16.5.4) let M be an indecomposable CM module over R. We consider the
first syzygy L of M as an i^'-module:

0 > L > R'W _!_> M > 0,

where depthjp(£) = depths (M) + 1 = dim(il/), so L is a CM module over R!. Letting
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p = p1 0^/ R and N = Ker(p), we now have the commutative diagram with exact rows:

0 • L • R'(n) -?—+ M • 0

•1 ' I ii
0 • N > # ( n ) — P - ^ M • 0,

where / is a natural projection and g = f\i. If i is a natural inclusion of R^ into Rf(n\
and if j is its restriction on JV, then the image of j lies in L and we have g - j = IN- This
shows that g 0 # U : L 0# / U —> N <8>R? U = N 0 # U is a split epimorphism of .R-modules.
Note from the above diagram that the kernel of g 0^/ U is isomorphic to Torf (M, U).
Consequently Torf (M, U) is a direct summand of L 0 # U as an .ft-module. Thereforey
M* a Toil (M,U)* is also a direct summand of (L 0# / U)*. Notice that, since M is
reflexive, M* is an indecomposable module as well as M. Thus, by the Krull-Schmidt
theorem, there is an indecomposable .ft'-summand P of L such that M* is an i£-summand
of (P 0^/ (I)*, in particular,

*) < rank i t((P 0 # *7)*) = rank^CP 0 H / U).

This proves (16.5.4), hence the theorem. |

In the rest of this chapter we restrict ourselves to situation involving only one-
dimensional tori, i.e. m = 1 with the notation in the beginning of this chapter. In
this case, the corresponding integer matrices are of size n x 1 for some n.

(16.6) NOTATION. Suppose we are given an integer matrix A = *(ai ,a2, . . . ,an)-
Without loss of generality, we may assume that the greatest common divisor d of
{ai, ct2,... , an} is 1. (If d > 1, then, considering the matrix B = t(ai/d} fl^/d,... , an/rf),
we clearly have R(A) = R(B).) Then we can make the polynomial ring S =
k[xi, X2,... , xn] into a Z-graded ring by the rule:

deg(z,-) = ai (1 < i < n).

For c €  Z, denote by Sc the degree c part in S. Clearly, S = £c€ Z Se and So = #(A) . For
a graded 5-module M = Ylnel Mn and for an integer c, we denote the shifted module by
M(c), that is, M{c)cf = Mc+C/ for any c' €  Z.

Let L be the quotient field of R(A) and let Q be the total graded ring of quotients of
S. Since {ai, 0 2 , . . . , an} generates (1) as an ideal of Z, we can find an element t €  Q of
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degree 1. Then it is easy to see that Q = L[i,t~1]. For any c G Z, since Sci~
c C L, Sc

is a (finitely generated) R(A)-modu\e of rank one, hence Sc is isomorphic to a fractional
ideal of R{A).

For any finitely generated Z-graded 5-modules M, iV and for any integers a, 6, we note

that there is a natural mapping of i2-modules:

(16.7.1) p : Hom5(M, N)a_h —> Hom/l(A)(M6, j\Tfl),

defined by restricting any homomorphism in Horri5(M, iV)a_& on Mb. Unfortunately p

may not be bijective in general. However, we can show the following:

(16.7) LEMMA. Let a, b be integers. Suppose that Sf, generates an ideal of S of height
> 2, i.e. hi(SbS) > 2. Then the map p : Koms(S,S)a-b(~ Sa_6) -> KomR(A)(Sb, Sa) is
an isomorphism.

PROOF: Let g be an element of Homs(5, S)a-b
 a n ( l suppose that g(Sb) = 0. Then taking

a nonzero element z in Sj,, we show that zg(l) = g(z) = 0 and that g(l) = 0, since S is
an integral domain. Thus g(w) = wg(l) = 0 for any w G 5, showing the injectivity of p.

To show that p is surjective, let / : Si, —• Sa be an ^(.AJ-homomorphism. Since
5 a C X^a and 'Sb C X/6, / 0 ^ ^ ) L : Ltb ^ Lta is a multiplication map by z<a~6 for some
z €  Lj hence / is also a multiplication by zta~b. We have to show that zta~b G Sa-b- For
this, consider the S-homomorphism:

— (ft

where ( )* denotes the dual by 5. Note here that (Sa ®R(A) S)** - {SaS)** C S and

(Sb®R(A)S)** - (SbS)** = S , because ht(SbS) > 2. By these isomorphisms, (f®R(A)S)**
is also a multiplication by zta'h and is an element in Eoms({SbS)**, (SaS)**) ~ (SaS)** C

5. Hence zfa"6 G 5 fl £<a"6 = 5 a_6 as desired. |

We quote a fact from Stanley's theory which enables us to know the CM property for

ideals Sc-

(16.8) PROPOSITION. (Stanley [62,Chap.l, 7.8]) Let

A = *(oi, a2 , . . . , ap, 6i, 62 , . . . , 6?)

wAere a,- > 0 (1 < i < p), bj < 0 (1 < ; < q) and p + q > 3. If c is a positive (resp.
negative) integer, then Sc is a graded CM module over R(A) if and only if there are no
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(aua7i... ,ap >)9i,A,. . . , ^ ) €  Z^+«) with a,- > 0 <VCJJ>. a,- < 0 / 1 < t < p, & < 0
(resp. ft >0),l<j< q, and £? = 1 ar,-at- + Ej= i ftfy = c.

For example, if A = ' ( 2 , - 1 , - 1 , - 1 ) , then 5C is a CM #(A)-module if and only if
c = —1,0,1,2. We shall show that this matrix is of finite type; see (16.10). Before this
we note the following, which is useful for determining AR quivers.

(16.9) LEMMA. Let T be an analytic CM local ring with perfect residue field and let
F° be a finiie subgraph of the AR quiver of <£(T) which is closed under AR sequences and
which contains the classes of the free module and of the canonical module. Suppose that
T is an isolated singularity and non-Gorenstein. Then F° is the whole quiver, and hence
T is of finiie representation type.

Here we say that F° is closed under AR sequences provided that all the classes of
indecomposable modules appearing in an AR sequence 0 —• iV —> E -+ M —» 0 belong
to F° if one of the classes of M and N does.

PROOF: Denote by K the canonical module of T. By virtue of (6.2), it is enough to show
that F° is a connected component of the AR quiver of T. Since F° is already closed under
AR sequences, it suffices to show that there are no irreducible morphisms X —• T or
K —> X with [X] £ F°. We show below that if there is an irreducible morphism X  —> T
(resp. K-+X), then [X] €  F°.

If X ~ K (resp. ~ T), there is nothing to prove, since the class of K (resp. T) is in F°.
Assume that X is not isomorphic to K (resp. T). Then, since T is an isolated singularity,
there is an AR sequence: 0 - • X - • E - • r'l(X) - • 0 (resp. 0 -> r(X) - • E -> X -> 0);
cf. (3.2). Therefore we see from (2.12) and (2.12)' that T (resp. K) is a direct summand
of E and that there is an irreducible morphism from T to r~l(X) (resp. from T(X) to
K). Since T is not isomorphic to if, we consequently have the AR sequence of the form:
0 -> T -> T~1(X)®G -> T-^T) -+ 0 (resp. 0 -> r(tf) -> r(X)®G -> K-+0). Therefore
r~l(X) (resp. T(X))1 hence X, lies in F°, since F° is closed under AR sequences. |

(16.10) PROPOSITION. (Auslander-Reiten [14])
The integer matrix A = *(2, —1,-1,-1) is of finite type.

Note that

£('(2, - 1 , - 1 , -1)) = *[[a?ia:!, xix2x3, xxx\, xix3xA, xxx\,

which is isomorphic to the subring k[[X2, XY, F2 , YZ, Z2, ZX]] of k[[X, Y, Z\].

PROOF: For simplicity, write R (resp. R) instead of R(A) (resp. R(A)). Note that R is
an isolated singularity of dimension 3 and is non-Gorenstein.
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As remarked after (16.8), S-i, 5o, S\ and S2 are graded CM modules over R. Notice

that

and

Hence S-\ ~ S\ and 5o — ft as i£-modules. Furthermore it is easy to see that 5_i is

isomorphic to the canonical module of R.

First of all, we compute the AR translation of S l i . Recall that r = (syz| tr( ))', (3.11),

and that the right hand side is isomorphic to (syz~( )*)' where ( )* means the .ft-dual,

since ( )• - syz|tr( ). Note that (Ci )* = Hom^S-i , R)~~ S[ ~ §7i by (16.7). To

compute the first syzygy of 5_i we take the Koszul complex over 5:

0 — 5(3) A l i i S(2)(3) U -»-»! 5(1)« ( " " ) . 5.
6 10 ) I " * 3 ) f ^ "o

Taking the degree —1 part in this sequence, we obtain an exact sequence of graded R-

modules:

Xi \ f x3 x4 0
J 0

( i f 3 4

(16 10 2) I J - x 2 0
( ) 0 _ ^ s , A l i A 5(3> l ° -*2*J. rf») ( " 3 4 ) . 5 - t — - » 0.
We define a CM ^-module M by the exact sequence:

(16.10.3) 0 , M , (̂3) i f i f i^ l i ^ , 0.

It is easy to see that M is an indecomposable module of rank 2. From (16.10.2) we have
an exact sequence:

(16.10.4) ()

0 > & ——* 5i (3 ) • M • 0.

By taking the canonical dual of this, we see that the following is also exact:

,„,. ( Xi X3 X2 )

0 > M1 v Homii(5r),5_i)- •+ RomR(S2, S-i)~
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R < M

Figure (16.10.5).

Comparing this with (16.10.3), we have Ml ~ M, since Hom^(5i, 5_i)~ ~
RomniS-uS-xy ~ R and KomR(S2,S-i)~ ^ Hom^^^- i )^ ~ fLi by (16.7). As a
result, T(S-I) ~ (syz^(5_i))/ ~ M' ~ M.

R
On the other hand, from (16.10.4), the following sequence is exact:

0 • M* > 5?i (3 ) XA X3 X2 ) 5r2 )

since (Si)* ^R*^R^S2*nd (Si)* ^ (5Ti)* - §i - 5-1 by (16.7). Hence, taking the
degree —2 part in (16.10.1) and completing it, we see that the sequence

is also exact. Therefore r(M) - (syzUM*))' ^ (5i) ; c- (5_i)' ~ R.

Applying the functor Honrg(5_i, ) to (16.10.3), we have an exact sequence

R

and one can show that 1 €  R is sent to the socle element of Ext^(5_i, M) by the second
mapping in the sequence. We, thus, conclude from (3.13) that the sequence (16.10.3)
is the AR sequence ending in 5_i. Taking the canonical dual, we also show that the
following is the AR sequence ending in M:

. G )
R ^ ^ 5Jx ( 3 ) • M • 0.
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Thus we have shown that Figure (16.10.5) is part of the AR quiver of £(R) which is
closed under AR sequences. Hence Lemma (16.9) implies that it is the whole quiver. |

(16.11) REMARK. Auslander and Reiten showed that the ring in (16.10) is the unique
CM ring of finite representation type that is an invariant subring by a finite group and
has dimension > 3. See [14] for further discussion.

In terms of toric singularities, their result shows that an integer matrix A =
*(a, — &i, —62,... , — br) (a > 0,6,- > 0,1 < i < r) is of finite type if and only if it satisfies
one of the following conditions:

(i) there exists an integer j (1 < j < r) such that 6,- = 0 (mod a) for any i but j ;

(it) r < 2 ;

(tit) r = 3, a is even and 6,- = a/2 (mod a) for any i.

In fact, the same argument as in (16.3.3) shows that R(A) is a cyclic quotient singularity
and each condition above corresponds respectively to the case (i) R(A) being regular,
(ii) R(A) having dimension < 2 and (in) R(A) being the ring given in (16.10).

We give another example of a non-Gorenstein CM ring of dimension 3 that is of finite
representation type.

(16.12) PROPOSITION. (Auslander-Reiten [14])
The integer matrix A = *(2,1, —1, —1) is of finite type.

Here in this case,

(*(2,1, - 1 , - 1 ) ) = A?[[a?iar|, x\xzx^ x\x\> x2xZi X2X4]]

~ k[[X,Y, Z,U,V]]/(XZ - Y\XV - YU,YV - ZU).

PROOF: Denote R = R(A) and R = R(A). Notice that R is an isolated singularity of
dimension 3 and is non-Gorenstein.

By (16.8) the ideals 5_2, S-i, So and S\ are graded CM modules over R. Note that

5_2 = {x\, X3X4, x\)R, S-\ = (z3, x±)R, So = R and S\ = (zi£3, X1X4, x2)R.

One can easily see that these are all non-isomorphic and that 5_i is the canonical module
of R. Taking the degree —1 part in the Koszul complex

0,
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we have an exact sequence of ^-modules:

+ 5 - i > 0.

Hence, by (16.7), r (£ ) £* ^k(£)) ^ ^
Likewise we obtain an exact sequence 0 -+ 5_2 —* R^ —• S2 —• 0 from

0 > 5(_4) -llfLl* 5(-2)W i ! L ^ 5 • S/(xltxl)S • 0,

ince S2 = (xi.asiyfl. Therefore r(5T2) ~ (syzk(5T2*))' ~ (syzk(52)) ' ~ (£T,) ' ~

To compute r ( 5 _ i ) we take an exact sequence of graded 5-modules:

4 *2 0 \
C3 0 X2 ]

. - . ^ . J - g i * 3 - x i a r 4 / ( 3 ) ( g l g 3 ^1^4 x 2 )

Let M be the reduced first syzygy of the ^-module 5i. Taking the degree 1 part in the
above sequence, we have the exact sequences:

(1612-1) n >M

0 • fl • Si © 5_i ' • M * 0.

Taking the canonical dual of (16.12.2), we obtain the exact sequence by (16.7):

(16-12.3) 0 vM, v ^ C )

On the other hand, there is an exact sequence of S-modules:
(16.12.4)
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_ 7

. a

Figure (16.12.6).

This, together with (16.12.3), gives the exact sequence:

(3
0 • R > 5_i 0 5i > Af' > 0.

Comparing this with (16.12.2) we show that M ~ M1. Thus T(STI) ~

M; ^ M. We have shown:

(16.12.5) r(Si) - 5T2) r(5T2) ~ S~u Ti) ~ Af and Af' ~ M.

Applying the functor Homg(S_i, ) to (16.12.3) and noting that M ^ M', we have
an exact sequence

where one can see that 1 €  R goes to the socle of Extj-(S_i, M) by the last map. Hence
(16.12.3) is an AR sequence. Dually, the sequence (16.12.2) is also an AR sequence. It
follows from this that r(M) ~ R.

From the Koszul complex over S:

0 > 5(-3) ^ 5( -2)0 5(-l

we have an exact sequence:

x2 )
S/(xux2)S > 0,

0.
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In the same manner as above we can show that this sequence is actually an AR sequence.
Finally, since (16.12.2) and (16.12.3) are AR sequences, we have irreducible maps S\ —• M
and M —• SL2, hence the AR sequence ending in S-2 must be of the form: 0 —• Si —•
M — §72 — 0.

Thus we have shown that Figure (16.12.6) gives a subgraph of the AR quiver of R that
is closed under AR sequences. Hence by (16.9) it is the whole quiver. |

(16.13) DEFINITION. Let ax > a2 > . . . > ar > 0 be given integers and let {Xij\ 0 <
j < aj, 1 < ii < r} be a set of variables over k. Then, take the ideal / of the polynomial
ring S\ = k[Xij\ 0 < j < a,-, 1 < i < r] generated by all the 2 x 2-minors of the matrix:

| 2 I I Xro
\ai I X X I I

\ I I Xro X r i ••• X r a r _ i \
I I -XV1 Xr2 ' ' • Xrar J

We define the graded ring R\ to be S\/I with deg(X{j) = 1 for all i, j} and call R\ the
scroll of type (ai, a2i... ,ar)« It is known that R\ is an integral domain of dimension
r + 1.

We can show that the scroll R\ is isomorphic to R(t(ai, 02> • • • , ar, — 1? — 1)) as a (non-
graded) &-algebra. In fact, since

we can define a mapping f : R\ —> R(t(ai,d2,... , ar, —1, —1)) by

= Xix^x^ (0 < j < a,-, 1 < • < r),

which can be seen to be a well-defined epimorphism of fc-algebras. Comparing the Krull
dimensions and noting that they are both integral domains, we see that / is an isomor-
phism.

In particular, the completions of these two graded rings are the same. Hence we can
deduce from (15.1) and from (15.14) that:

(16.13.1) The scroll of type (ai, a2i... , ar) is of finite representation type if and only if
the integer matrix (ai, a2, . . . , ar, — 1, — 1) is of finite type.

Note that we have shown in (16.12) that the scroll of type (2,1) is of finite representation
type.

Next we shall give a certain sufficient condition for integer matrices to be of infinite
type, (16.15). For this purpose, we settle the notation first.
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(16.14) NOTATION. Let A be the same as in (16.6). We can give the structure of a
Z2-graded ring on S = k[xi, x<i,... , xn] by

deg(a-) = (ai) 1) for 1 < i < n.

Denote the part of degree (c, d) £ Z2 in S by 5(c,<f)- Note that, with the notation in

(16.6),

Sc=ES(cA (eel).
del

In particular, R(A) = Y,d$Z S(o,d)> which gives the natural grading on R(A) that was
already given in (16.1.1).

For any Z2-graded S-module M = 52(C)d)el2 (̂c,<*)> w e c a n regard it as a Z-graded S-

module by defining the part of degree c €  Z to be Mc = J2del M(c,d)- Note that each Mc

is a graded i2(j4)-module. We denote by M(c, d) the shifted Z2-graded module by (c, <f),
that is, M(c, d)^^ = M(c+C/ j+d')- Notice that, for any Z2-graded 5-module M and N,

the module Ext^M, N) is also Z2-graded, and that

Ext*5(M(c, rf), N(J, d')) ~ Ext*5(M, N)(c' -c,d'- d).

(16.15) L E M M A . Given an integer matrix A = * ( a i , a 2 , . . . ,an)> suppose that there
exist integers a, b and c such that

(16.15.1) dim* Ex4(S aS, S) (_a+6 ,c ) > 2,

(16.15.2) 5a awrf 56 are CM modules over R(A),

(16.15.3) ht(SaS) > 2, ht(565) > 2, and

(16.15.4) 5 (a_6)_c) = 0.

Then A is of infinite type.

PROOF: Write R instead of R(A). We first claim that

(16.15.5) dim* Extjj(5a(-c), Sb)0 > 2.

For this, let / be a Z2-graded ideal of S generated by Sa, i.e. I = SaS. Note that Ia = Sa-

Take a free cover of 7 to obtain an exact sequence of S-modules:

(16.15.6) 0 > L > S(-a)W > 7 . 0.

Thus we have the exact sequence:

(16.15.7) S(a + 6)W > Hom5(X, 5(6)) • Ext^(7,5(6)) • 0.
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On the other hand, taking the degree a part of (16.15.6) we see that 0 —• La -
la = Sa —• 0 is an exact sequence of /^-modules. Taking the dual by Sb of this sequence
and comparing it with (16.15.7), we have a commutative diagram of graded jR-modules
with exact rows:

h) * ^om.ji(Laj Sb) • Ext^(S'a , Sb) • 0

Hom5(L,5(6))_a > Ext^(J,S(6))_a > 0,

where pi and pi are the maps defined in (16.7.1) and p$ is the map induced by pi. Since

p\ is an isomorphism, we see that p$ is injective, hence

dim* Exti(5«, S6)c > dimjb Ext^(J, 5)(^fl+6|C) > 2.

This proves (16.15.5).

For any element r £ Ext^(5r
a(—c), ^6)0? we write the corresponding extension of R-

modules as

0 > 56 > Mr • 5a(-c) • 0.

Hence, by (16.15.2), MT is a CM module over R and has rank 2. Secondly we claim the
following:

(16.15.8) For n , r2 €  Extk(Sa(-c),Si)o, if Mri ~ MT2 up to degree shifting as graded
R-modules, then T\ and r2 are linealy dependent over k.

If this is true, then by (16.15.5), we will have an infinite number of nonisomorphic
graded CM modules over R of rank 2, hence gtC(R) is of infinite representation type.
Consequently £(R) is of infinite representation type by (15.1).

To prove (16.15.8), suppose that there is an isomorphism / : Mn —> MT2 of graded
i2-modules:

0 > Sb - ^ — MTl - ^ U Sa(-c) > 0

0 > Sb ^ Mn > Sa(-c) , 0,

where one can see that / must be of degree 0 as an i£-homomorphism by comparing the
minimal degree in MTl and MT2. Hence TT2 • / • i\ is in Eom^S^ Sa(—c))o ~ S(a_b,-c)y
and this is zero by (16.15.4). Therefore / induces the mapping g : Sb —• Sb and h :
Sa(—c) —> Sa{—c), both of which are jR-homomorphisms of degree 0. Since End/^(iS'a)o —
End5(S')(o,o) — ̂  by (16.7), g is a multiplication map by an element of k. Likewise h is
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also a multiplication by an element of k. Hence we have T\ = a • TI for some a E k. This

proves (16.15.8), hence the lemma. |

This lemma may be applied to various examples of integer matrices. For example, we
can show:

(16.16) PROPOSITION. (Auslander-Reiten [14]) The integer matrix

i4 = ' ( a i , O 2 , . . . , a r , - l , - l ) ( a 1 > a 2 > . . . > a r > 0 , r > 2)

is of finite type if and only if A is either *(1,1, —1, —1) or '(2,1, —1, —1). In particular,
the scroll of type (ai, a2 , . . . , ar) (r > 2) is of finite representation type only when its type
is either (2,1) or (1,1).

PROOF: We have shown in (16.12) and after (16.2) that the matrices '(2,1, - 1 , -1 ) and

*(1,1, —1, —1) are of finite type. To show the converse, suppose that the integer matrix

A is of finite type. First we notice from (16.8) that

(16.16.1) 5, is a CM fl(j4)-module if - £J=i a, < / < 1.

Next notice that, for any negative integer /, 5/ generates the ideal (a;r+i,a;r+2)~/5 in 5,
since any monomials of degree I in S must contain the variables xr+\ and #r+2 at least
—/ times. Therefore the ideal 5/5 has height two and has the following free resolution as
a Z2-graded 5-module:

0 > 5(-/+l,/-l)(- /) > 5(-/,/)(-/+1) > SiS • 0.

Hence the following sequence is exact:

(16.16.2) 5(/} _/)(-Hi) > s ( / _ i > _ / + i ) ( - 0 > Ex4(5/5,5) > 0.

We claim that

(16.16.3) ar = 1.

To show this, suppose that ar > 2, and let 5 = j{i| 1 < i < r, at- = a r }. We consider two

cases and show the contradiction in each case.

The case of s > 2. In this case, set a = — ar — 1,6 = 1 and c = —1. We take the

(ar + 2, —l)-part in (16.16.2) with / = — ar — 1 to get the exact sequence of A;-vector

spaces:

&? fcS M 0.
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Since dim*, S(1>ar) = sar and since dim* 5(0,^+1) = s(ar + 1), the above sequence implies

, S)(ar+2)-i) > s(ar + I)2 - sar(ar + 2) = s > 2.

Hence the condition (16.15.1) is verified. Secondly, 5_ar-i and £1 are CM modules over
R(A) by (16.16.1). Thus the condition (16.15.2) is satisfied. Thirdly, ht(SLar-iS) = 2
as shown in the above, and h t^ iS) > 2, since S\ contains x\x*1^ and x^x**^. This
shows that (16.15.3) holds. Finally, S^ar_2)i) = 0, showing that (16.15.4) is satisfied.
Therefore Lemma (16.15) implies that A is of infinite type, a contradiction.

The case of s = 1. In this case, take a = — ar — 2, 6 = 1 and c = —2. Then the same
argument as above shows that the conditions in (16.15) are all satisfied. (Prove this.)
This contradicts the assumption that A is of finite type.

Since we get a contradiction in either case, we have shown that ar = 1.
Next we prove that

(16.16.4) £>i<3.
t=i

Suppose not. Note, then, that SL3 and S\ are CM modules by (16.16.1). Thus, setting
a = —3, 6 = 1 and c = —2, one can verify all the conditions in (16.15), thus A is of
infinite type, a contradiction.

We conclude from (16.16.3) and from (16.16.4) that the possible types of A are
'(1,1, - 1 , -1) , '(2,1, - 1 , -1) and '(1,1,1, - 1 , -1) . We have to show that the last one is
excluded. However, this can be done by completely the same argument as above, if we
set a = —2, 6 = 1 and c = — 1. We omit the proof of this, leaving it to the reader. |

(16.17) Example. By a similar argument to the proof of (16.16), the following matrices
are shown to be of infinite type by setting a, 6 and c as indicated below.

Integer Matrix
' (3 ,2 , -2 , -1)
' (3 ,2 , -2 , -2)
' (3 ,3 , -2 , -1)

a
- 4

- 6

- 2

6
4
2

5

c

- 3
- 2

- 2

(16.18) Example. Consider an integer matrix A = '(a, 6, - 1 , —1, -1) . Then A is of finite
type if and only if one of the following conditions holds:

(i) a = 1 and 6 < 0;
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(ii) 6 = 1 and a < 0;

(Hi) a < 0 and 6 < 0.

In fact, if A is of finite type, then, by (16.4), it is necessary that the matri-
ces ' ( a , - 1 , - 1 , - 1 ) , ' ( 6 , - 1 , - 1 , - 1 ) and '(a, 6 , -1 , -1) are of finite type. The con-
ditions for these matrices being of finite type are known from (16.11) and (16.16),
which require either A satisfies one of the above conditions, A = *(1,1, —1, —1, —1)
or A = «(2,1,-1, - 1 , - 1 ) . If A = ' (1 ,1 , -1 , - 1 , - 1 ) , then, by (16.3.1), R(A) ~
jR(*(l, 1,1,-1,-1)) which is a scroll of type (1,1,1) and is not of finite representation
type; see (16.16). Moreover '(2,1, —1, —1, — 1) is also excluded, because

£(*(2 , 1, - 1 , - 1 , - 1 ) ) = fc[[ziZ3, XiX$XA, X\x\, XiXAX$, XXx\, Z1Z5Z3, Z2«3, Z2Z4, X2X5]]

is a Gorenstein ring but not a hypersurface and can never be of finite representation type;
see (8.15). Conversely if A satisfies one of the above conditions, then R(A) is regular,
hence of finite representation type.

We do not know if, aside from '(2, - 1 , - 1 , -1 ) , '(2,1, - 1 , -1) , '(1,1, - 1 , -1) and other
trivial ones like (16.18), there are integer matrices of size n x 1 (n > 4) of finite type or
not.
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Chapter 17. Homogeneous CM rings of finite representation type

In this chapter we will give a complete classification of homogeneous CM rings of finite
representation type according to Eisenbud-Herzog [26]. We shall show that the list is
exhausted by the examples we have shown in the previous chapters.

In the rest A: will denote an algebraically closed field of characteristic 0. Let R be an N-
graded CM fc-algebra which is generated in degree one and call such R a homogeneous
CM ring over k. By definition it is described as:

oo

R = Y,Ri = Ro[R\] with Ro = k.
*=o

Let m be the irrelevant maximal ideal of R, i.e. m = ]CiSi Ri and let R be the m-
adic completion of R. Naturally we are interested in the complete local ring R of finite
representation type. However, we showed in Chapter 15 that R is of finite representation
type if and only if Qt£(R) is, where Qt€(R)  denotes the category of graded CM modules
over R and degree-preserving homomorphisms. Thus we mostly think of homogeneous
rings themselves other than completions.

We shall be able to give a classification of homogeneous CM rings with Qt£(R) of finite
representation type.

First we recall some numerical aspects of homogeneous CM rings.

(17.1) DEFINITION. Let R be a homogeneous CM ring over k of dimension d and
let M = E i ^ o ^ ' b e a n N-graded module over R with depth^(M) = dim(M) = t. The
power series in a variable A:

i=0

is called the Hilbert series of M.
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It can be seen that

P(X)
(17.1.1) HM(X) =

- xy
for some polynomial P(X) with integral coefficients. To show this very quickly, let
{x\,X2,... ,zt} be a regular sequence on M where each X{ is an element of degree one
in R and set ;M = M/(xi, x2,... ,«i)Af (0 < i < <) and M = *M. From the exact
sequences:

0 > (i_iM)(-l) — ^ ,--iM > tM > 0

we see that

Subsequent use of this gives

Hjg{X) = (1 - A)'

Since M is an Artinian module, H-j^{X) is a polynomial in A, so that, putting P(X) =
Hjj(\)j (17.1.1) follows. Note from this that Hj^{X) is independent of the choice of a
regular sequence {a?i, a*2, • • • , xt}.

Writing

P(X) = J2hiXi (hi Gl, hs^0),
»=o

we call the sequence of integers (hQ)h\)... , hs) the h-vector of M and denote it by
h{M). Notice that each hi is nonnegative, because it is the dimension of the degree i
part in M.

A homogeneous CM ring R is said to be stretched (in the sense of Sally) if h(R) is of
the form (l,n, 1,1,.. . ,1).

First we remark the following fact:

(17.2) LEMMA. (Eisenbud-Stanley) Lei R be a homogeneous CM ring ihai is an inte-
gral domain with h(R) = (/IQ, ^I, . . . , hs). Then there are inequalities:

ho + hi + ... + hi<hs + hs-i + . . . + hs_i for 0 < i < [|].

PROOF: Let KR be the graded canonical module of R and let a be an integer satisfying
(Kll)a ^ 0 and (KR)i = 0 (i < a). Shifting the degree of KR by a, we obtain an N-
graded module M with Mi = (KR)a+i for any i. It is known by Stanley (cf. [62]) that
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the Hilbert series of M can be written:

(17.2.1) HM(X) = ^ -
(1 - X)d

(Prove this as follows: Reducing modulo a system of parameters, we see that M is the
canonical module of R. Then, since R is an Artinian local, M is the unique indecom-
posable injective module over i2, hence there is a perfect pairing R x M —* k. Hence
diirijfc(jR,-) = dimjfc(M,_t) (0 < i < s), which shows (17.2.1).)

Taking an element x(^ 0) in Mo, define a degree-preserving homomorphism <p : R —• M
by (p(r) = rx (r €  R). Furthermore denote the cokernel of <p by N. Since R is an integral
domain and since M is torsion free, we see that <p is a monomorphism, so that the
following sequence is exact:

(17-2-2) 0 • R —^-> M > N • 0.

Therefore we have

(17.2.3)
HN(X) = HM{X) - HR(X)

_ h0 4- hxX + -- + hsX
s

(i-xy

(Check the last equality !) On the other hand, we see from (17.2.2) that N is an N-graded

module with depth(N) = dim(AT) = d — 1, therefore the h-vector of N is nonnegative as

remarked before. Hence all the coefficients in the numerator of (17.2.3) are nonnegative. |

Applying the lemma to stretched CM rings we have:

(17.3) COROLLARY. Lei R be a stretched homogeneous CM domain. Then the h-
vecior h(R) of R is one of the following:

( 1 , 1 , . . . , 1), ( l ,n) and ( l , n , l ) with n > 2.

(17.4) REMARK. Stanley (cf. [62]) showed that the h-vector determines completely

the Gorensteinness of a homogeneous CM domain. To be precise, a homogeneous CM

domain R is Gorenstein if and only if the h-vector (ho, hi,... , hs) of R is symmetric,
that is, hi = hs-i for any i (0 < i < s).

We shall give a proof of this for convenience of the reader. As in the proof of (17.2),
let M be the canonical module of R shifted degree, so that it is N-graded and MQ / 0.
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Then M has h-vector (hs, hs.u... , h0) by (17.2.1). If R is Gorenstein, then M ~ R

therefore h{ = /i5_,-. Conversely suppose h(R) is symmetric. Taking an exact sequence
as in (17.2.2) one sees from (17.2.3) that the module N has null Hilbert series, therefore
N = 0 and R ~ M, which means R is Gorenstein.

Combining this remark with (17.3) we proved:

(17.5) C O R O L L A R Y . Let R be a stretched homogeneous CM domain which is not

Gorenstein. Then the h-vector of R is ( l , n ) for some n>2.

(17.6) Examples.
(17.6.1) Let / be the ideal of S = k[U, V, W, X, Y, Z] generated by all the 2 x 2-minors of

the symmetric matrix:

/ U V W\
V X Y .

\W Y Z )
We define the homogeneous CM ring R to be S/I, where all variables have degree

one. Then the h-vector is (1,3), hence R is stretched. Note that R is isomorphic to

iJ(*(2, —1, —1, —1)) as a non-graded fc-algebra; see (16.10). In particular, R is of finite

representation type.

(17.6.2) Let R be the scroll of type (2,1) ; see (16.13). Then h{R) = (1,2) and R is
stretched, too. Note that this is also of finite representation type.

As we expect from the above, there is an intimate relation between finiteness of repre-
sentation type and stretchedness.

(17.7) THEOREM. (Eisenbud-Herzog [26]) Homogeneous CM rings of finite represen-
tation type are stretched.

PROOF: Suppose that a homogeneous CM ring R is not stretched. We shall construct
an infinite number of nonisomorphic indecomposable CM modules over R. To this end,
let {xi, £2, . . . , Xd) be a system of parameters of R with deg(s,) = 1 for any i, and let us
write R = R/(x\, xi... , x^)R as in (17.1). Since R is not stretched, there is an integer
/ with / > 2 and dim*; R\>2. Take y €  -ft/. Let L' be a minimal free resolution of the
^-module yR and let K' be the Koszul complex of the regular sequence {zi, X2,... , xj}

that is a free resolution of R as an R-module. Since there is a natural embedding yR C R,

we have a morphism <p : L' —• K' of complexes:

• • • * Ld+l • Ld • Ld~l > • • • • L1 • L° > 0

(n I ip ~~ I (p I (p I

0 • Kd • Kd~l • • • • • Kl • K° • 0 .
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(d\

Note that K% = R(-i)\i'. Furthermore, since y has degree / > 2, L° = R(-l) and
L% = (BjR(—o>ij) where a,j > i + / > i -f 2. In particular, note that:

(17.7.1) (Ld-l)m = (Ld)m = 0 if rn<rf.

Let C" be the mapping cone of <p : L' —• if". Since there is an exact sequence of complexes:

0 • K' > C" > L'[-l] • 0,

taking homologies of the complexes in this sequence, we can easily see that C' is a free
resolution of the .R-module R/yR. By the definition of mapping cones, C" is described
as follows:
(17.7.2)

>Ld^ R(-d) e Ld~l JL R(-d + 1)W 0 Ld~2 - . • fl(-l) 0 L° JL R - . 0.

Now let M(y) be the cokernel of 6 + 1 in this sequence. Since C' is acyclic, M(y) is a c/-th
syzygy, hence it is a CM module over R, (1.16). Taking the degree d part in the exact
sequence:

Ld -+ R(-d) 0 L*-1 -+ M(y) -> 0,

we obtain from (17.7.1) dimjt M(y)d = 1 and M(y)m = 0 if m < d. Thus there is a unique
indecomposable summand N(y) of M(^) such that M{y)d = 7V(y)̂ . We shall prove:

(17.7.3) For yrf eRh if N(y) ~ Ntf), then yR^y'R.

If this is true, then, since dimjk R\ > 2, there are an infinite number of nonisomorphic
iV (̂y)'s, hence the proof will be finished.

To prove (17.7.3) let e(y) be a generator of N(y)d as a &-vector space and let e(y) be
the natural image of e(y) in N(y) = N(y)/(xi1X2,... ,£d)N(y). Notice that e(y) is an
element in N(y) of minimal degree and that it is unique up to multiplication by a nonzero
element of k. We can show:

(17.7.4) The annihilator Ann#(e(t7)) is equal to the ideal (a?i, JC2> • • • , £<f, y), where y is a
representative of y in R.

Note that (17.7.3) is immediate from this, because, if N(y) ~ A^(y/), then e(y) is sent
to e(y') (up to multiplication by a nonzero element in k) by this isomorphism, hence
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For the proof of (17.7.4), we compute Tor^CR/lfR, IT) using the free resolution (17.7.2)
of R/yR, and get the following exact seqeunce:

0 > Toi%(R/yR,R) -^-> M(y) ®RR > Cd~l ®RR.

Here, clearly, Toif(R/y~R,~R) ~ (R/y~R)(-d), and the fc-subspace (R/y'R)(-d)d in this
module is exactly mapped onto M(y)d by ̂ . It, hence, follows that the i^-submodule
of M(y) generated by e(y) is isomorphic to R/yR up to degree shifting, therefore its
annihilator is (a?i, aj2> • • • > #<*> 2/)- I

Combining this theorem with (17.5) we show:

(17.8) COROLLARY. Suppose that a homogeneous CM ring R is of finite represen-
tation type. If R is not Gorenstein and if it is an integral domain, then its h-vector is
(1, n) for some n > 2.

Homogeneous CM domains with h-vector of the form (l,n) were classified by Bertini.
They are:

(i) hypersurfaces fc[Xi, Xi,... , Xn]/(Q) for some quadratic polynomial Q,

(ii) the ring defined in (17.6.1), and

(Hi) the scrolls defined in (16.13).

Since we already know which, among the above, are of finite representation type, we
derive from (17.8):

(17.9) COROLLARY. Let R be a homogeneous CM domain of finite representation
type. If R is not Gorenstein, then R is either the ring defined in (17.6.1) or the scroll of
type (2,1) or type (m) for some m.

Now we come to the complete classification of homogeneous CM rings of finite repre-
sentation type which is due to Eisenbud and Herzog.

Let R be a homogeneous CM ring of finite representation type.
First consider the case of dim(i^) = 0. Observe that R is a homomorphic image of the

polynomial ring in one variable, for otherwise, R would contain infinite distinct ideals
In (n €  N) and R/In would be all nonisomorphic modules. (Notice that all modules over
a ring of dimension 0 are CM.) It then follows that R ~ k[X]/(f) for some polynomial
/ , but / = Xm for some m > 0, because it must be a homogeneous polynomial.

Next consider the case of dim(.ft) > 1. If R is a Gorenstein ring, then by (8.15) it is a
hypersurface: R = fc[Xi,X2,... ,Xn] /( / ) . Since n > 2, / must be the one listed in (8.8).
Among them, homogeneous ones are X\+Xf + .. .+X% and X^A^+Xf. Suppose R is not
Gorenstein. If dim(i^) = 1, then, by virtue of the graded version of (9.2), R birationally
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dominates a simple hypersurface singularity that is homogeneous. Such a non-Gorenstein
ring is easily seen to be isomorphic to the ring k[X,Y,Z]/(XY,YZ,ZW), cf. (9.16). If
dim(i?) > 2, then R is an integral domain, because it is an isolated singularity, (4.22).
In this case, we have already done by the above corollary.

Summing up the above, we have shown:

(17.10) THEOREM. (Eisenbud-Herzog [26]) A homogeneous CM ring of finite repre-
sentation type is isomorphic to one of the following rings:

(i) k[Xi,X2,... iXn],

(ii) k[X]/(Xm) for some m > 1,

(Hi) k[XuX2,... , Xn]/{X} + X\ + .. . + X*),

(iv) k[XuX2]/(XlX2+X2)9

(v) k[Xu X2, X3]/(XlX2i X2X3, X3Xi),

(vi) the scroll of type (m) for some rnL

(vii) the scroll of type (2,1); and

(viii) the ring defined in (17.6.1).
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Addenda

(A.I) We were not able to discuss geometric aspect of CM modules.
To give a brief explanation on this, let R be a complete two-dimensional normal local
domain over an algebraically closed field of characteristic 0. One can construct a minimal
desingularization TT : Y —• X = Spec(i£). Let E be the closed fiber of ir and decompose
it as E — U; Ei where each Ei is an irreducible component of E. Suppose that R is a
simple hypersurface singularity. Then it is known that all the E{ are rational curves. For
a CM module M over R, we define

M = 7r*M/m-torsion,

which is known to be a vector bundle on Y. If M is indecomposable and nonfree, then
there is a unique i such that

(d(M) • Ei) = 1,

where c\(M) is the first Chern class of M. Artin and Verdier [3] showed that this corre-
spondence M »—• E{ gives rise to a bijection between the set of classes of indecomposable,
nonfree CM modules over R and the set {E{}. This explains how the Dynkin diagrams
appear as AR quivers of R. See also Esnault [27], Esnault-Knorrer [28] and Kahn [42]
for further discussion in this direction.

(A2) There is a noncommutative analogy of CM modules.
Let A be an order in an Azumaya algebra over a field and let R be its center. A left
A-module is said to be CM if it is a CM module as an .R-module. The problem is to
classify orders which have only a finite number of isomorphism classes of indecomposable
CM modules. In [1], Artin succeeded in doing this in the case that R is a complete
regular local ring of dimension 2 of equicharacteristic 0 and that A is a maximal #-order.
For two-dimensional maximal orders with arbitrary centers of characteristic 0, it was also
done by Artin [2]. See also Reiten-Van den Bergh [54] for non-maximal orders.
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(A3) A module M over a local ring R is said to be a Buchsbaum module if, for any
system of parameters {x\, xi,... , xj} of M,

(aji, a 2 , . . . , Xi)M : s i + 1 = (zi, z 2 , . . . , xi)M : m (0 < » < d - 1),

where tn is the maximal ideal of R. Furthermore, M is a maximal Buchsbaum mod-
ule if it is a Buchsbaum module with dim(Af) = dim(i?). Clearly, CM modules are
maximal Buchsbaum. Goto proved that a regular local ring has only a finite number of
isomorphism classes of indecomposable maximal Buchsbaum modules. Again a question
arises: When does R have only a finite number of classes of indecomposable maximal
Buchsbaum modules ?

In [30], Goto and Nishida showed that, if R is a complete CM local ring of dimension
> 2 and if R/m is an algebraically closed field of characteristic unequal to 2, then such
finiteness leads to the regularity of R.
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admitting AR sequences, 15
algebraic torus, 143
analytic algebra, 6
AR quiver, 36
AR sequence, 10, 14
AR translation, 10
Auslander category, 26
Auslander transpose, 18
Betti number, 68
birationally dominate, 69
bounded multiplicity type, 44
Brauer-Thrall theorem, 45
Buchsbaum module, 169
canonical module, 3
chain of irreducible morphisms, 51
Clifford algebra, 130
closed under AR sequences, 149
CM approximation, 33
Cohen-Macaulay module (CM module), 1
conductor, 72
convergent power series, 6
Dedekind different, 46
efficient system of parameters, 48
equivalence of matrix factorization, 55
finitely generated functor, 26
finitely presented functor, 26
finite representation type, 39, 135
fundamental module, 100
fundamental sequence, 100
gradable module (homomorphism), 137
graded isolated singularity, 138
Grothendieck group, 118
Harada-Sai lemma, 51
Henselian ring, 5
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Hilbert series, 161
homogeneous CM ring, 161
h-vector, 162
hypersurface, 54
indecomposable, 5
integer matrix of (in)finite type, 144
irreducible morphism, 11
isolated singularity, 16
isomorphism up to degree shifting, 135
Klein group, 94
local cohomology, 1
local duality, 4

locally free on punctured spectrum, 17
matrix factorization, 55

McKay graph, 87
minimal reduction, 62
morphism of matrix factorizations, 55
multiplicity, 2
Noetherian different, 46
Noetherian normalization, 3
periodic resolution, 56
periodicity except for a finite part, 68
pseudo-reflection, 88
quadratic space, 124
reduced matrix factorization, 55
reduced syzygy, 5

representation finite, 39
scroll, 155
separable system of parameters, 6, 46
simple object, 28
simple (hypersurface) singularity, 60

split morphism, 6
stable AR quiver, 117

stretched ring, 162

syzygy, 5
toric singularity, 143
Yoneda's lemma, 26
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js M, the Krull dimension of an i£-module M.
depths M, the depth of an i2-module M.
length^M), the length of an Artinian il-module M.
H*m(M), i-th local cohomology of M with support in {tn}; (1.2).
e(M), the multiplicity of M; (1.6).
KR, the canonical module of i£; (1.10).
syzn(M), the reduced n-th syzygy of M; (1.15).
k{x\, X2,... , xn}, convergent power series ring over a valued field ib; (1.19).

), the category of finitely generated .ft-modules.
), the category of CM modules over R.

S(M) (resp. S'(N)); (2.1) (resp. (2.1)').
T(M), the AR translation of Af; (2.8).
T~\M); (2.8)'.

tr(M), the Auslander transpose of M; (3.5).

Mod(€) , the category of contravariant additive functors from <£ to (Ab)\ (4.1).
mod(€) , the Auslander category of <£; (4.6).
(M, N), = Homit(M, TV) in Chapters 4 and 5.
Sjif, the simple functor associated to M; (4.11).
Mod(O; (4.14).
mod((t); (4.14).
(M,N)n; (5.1).
Irr(M, TV), the space of irreducible morphisms from M to TV; (5.1).
irr(M, N) , the dimension of Irr(M, N); (5.1).
n(R), the number of isomorphism classes of indecomposable CM modules over R\ (5.10).

?, the Noetherian different of R over T; (6.6).
, the Dedekind different of R over T; (6.6).
(JR, M), i-th Hochschild cohomology of an fl-module M; (6.8).
; (6.11).

MFs{f), the category of matrix factorizations of / ; (7.1).
Coker(yi);(7.2),(7.4).
MF5(/); (7.3).
EMEs(/); (7.3).
& (7-3).
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c(/), the set of ideals / with / €  I2] (8.1).
I(M); (8.11).
Pn(M), n-th Betti number of M; (8.18).
S * G, the skew group ring of G over 5; (10.1.1).
p(S * G), the category of projective modules over S * G; (10.1).
Mc(F, G), the McKay graph of G on V\ (10.3).
m«/*t-(tf0; (10.3).
"i{P)\ (10.3).
#1; (12.1.1).
#"; (12.8).
£(#), the stable AR quiver of R; (12.12).
K0(2t), the Grothendieck group of 2t; (13.1).
AR(€) ; (13.6).
RQJ the local ring of hypersurface defined by a quadratic form Q\ (14.1).
GQ, the associated graded ring of RQ\ (14.4).
G(Q), the Clifford algebra of Q; (14.6).
0t2R(C(Q)), the category of graded G(Q)-modules; (14.7).
Qt€(R)i the category of graded CM modules over R; (15.1).
Tgr, graded AR translation; (15.4.1).
Tgr, the subgraph of F consisting of gradable modules; (15.9).
R(A)j the semigroup ring defined by an integer matrix A; (16.1).
R(A)j the toric singularity associated with an integer matrix A; (16.1).
HM(X), the Hilbert series of Af; (17.1).
h(M), the h-vector of M; (17.1).
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